Electrosynthesis of polyfuran in acetonitrile-boron trifluoride-ethyl ether mixture and its device application

No Thumbnail Available

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley & Sons inc

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

Electrochemical polymerization of furan was achieved in acetonitrile/boron trifluoride/ethyl ether (CH3 CN/BF3/EE) mixture in the presence of tetrabutylammonium tetrafluoroborate via constant potential electrolysis at 1.4 V versus Ag/AgCl. Electrochemical behavior of furan was investigated in the same solvent mixture of varying ratios, utilizing cyclic voltammetry. Free-standing polyfuran (PFu) films were obtained in CH3CN/BF3/EE mixture (2/4/4; v/v/v) and characterized using FTIR spectroscopic technique. Spectroelectrochemical behavior of the PFu film was investigated by recording the electronic absorption spectra, in sitn, in monomer-free solution. It is observed that PFu film can be reversibly cycled between -0.1 V (gray) and + 0.6 V versus Ag-wire (gray color); however, this behavior diminishes in the presence of water. Electrochromic device application of PFu film with poly(ethylene dioxythiophene) was also studied. (c) 2006 Wiley Periodicals, Inc.

Description

Onal, ahmet muhtar/0000-0003-0644-7180

Keywords

polyfuran, electrochemistry, electrochromic properties, device application, spectroelectrochemistry, cyclic voltammetry

Turkish CoHE Thesis Center URL

Citation

13

WoS Q

Q2

Scopus Q

Source

Volume

103

Issue

2

Start Page

871

End Page

876

Collections