Search Results

Now showing 1 - 10 of 12
  • Book Part
    Kinetics of Co2 Capture by Carbon Dioxide Binding Organic Liquids
    (Springer international Publishing Ag, 2016) Orhan, Ozge Yuksel; Kayi, Hakan; Alper, Erdogan
    [No Abstract Available]
  • Article
    Citation - WoS: 10
    Citation - Scopus: 9
    A Computational Study on 4,7-Di(furan Monomer and Its Oligomers
    (Springer, 2014) Kayi, Hakan; Kayı, Hakan; Kayı, Hakan; Chemical Engineering; Chemical Engineering
    The energy gap, Eg, between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels that determines the electronic and optical properties of 4,7-di(furan-2yl)benzo[c][1,2,5]thiadiazole (FSF) polymer is calculated by performing quantum chemical calculations. First, we theoretically investigated the most stable conformers of FSF monomer and its corresponding oligomers at the B3LYP/6-31G(d) and B3LYP/LANL2DZ levels of theory. We reveal the theoretical molecular structure of this very recently synthesized novel monomer and its oligomers for the first time in the literature. Our results from the B3LYP/6-31G(d) calculations indicated that FSF polymer has a low HOMO-LUMO gap of 1.55 eV to be in good agreement with the experiments. Experimental design and synthesis of novel conjugated polymers require time-consuming and expensive procedures. The findings from this study are promising for the use of computational methods in the design of the novel conjugated polymers, and help to narrow the materials to be used in design and synthesis of conjugated polymers with desired properties.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    A Theoretical Investigation of 4,7-Di(furan Donor-Acceptor Type Conjugated Polymer
    (Elsevier, 2015) Kayi, Hakan; Elkamel, Ali
    Quantum chemical calculations are performed using density functional theory (DFT) to investigate the HOMO-LUMO energy gap of the 4,7-di(furan-2-yl)benzo[c][1,2,5]selenadiazole-based (FSeF) donor-acceptor type conjugated polymer which ascertains the optoelectronic properties and plays a crucial role, especially in polymeric solar cell applications. In this paper, the most stable conformers of the FSeF monomer and its corresponding oligomers are investigated at the B3LYP/Def2TZV and B3LYP/LANL2DZ levels of theory, and their molecular structures are revealed. The band gap of the polymer is determined by linear-fitting and extrapolation of the DFT data. This gap is found to be 1.44 eV and 1.45 eV by the B3LYP/Def2TZV, and B3LYP/LANL2DZ with PCM calculations, respectively. Our theoretical findings related to the band gap of the FSeF polymer (PFSeF) are in good agreement with other experimental studies in the literature and, hence, the theoretical methods used in this study are promising for the design of similar donor-acceptor type novel conjugated polymers. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Correlations Between Hardness, Electrostatic Interactions, and Thermodynamic Parameters in the Decomposition Reactions of 3-Buten 3-Methoxy and Ethoxyethene
    (Springer/plenum Publishers, 2015) Hasanzadeh, Neda; Nori-Shargh, Davood; Kayi, Hakan; Javid, Nargess Rezaei
    Decomposition of the three isomeric compounds, 3-buten-1-ol (1), 3-methoxy-1-propene (2), and ethoxyethene (3), at two different (300 and 550 K) temperatures has been investigated by means of ab initio molecular orbital theory (MP2/6-311+G**//B3LYP/6-311+G**), hybrid-density functional theory (B3LYP/6-311+G**), the complete basis set, nuclear magnetic resonance analysis, and the electrostatic model associated with the dipole-dipole interactions. All three levels of theory showed that the calculated Gibbs free energy differences between the transition and ground state structures (Delta G (not equal)) increase from compound 1 to compound 3. The variations of the calculated Delta G (not equal) values can not be justified by the decrease of the calculated global hardness (eta) differences between the ground and transition states structures (i.e., Delta[eta(GS)-eta(TS)]). Based on the synchronicity indices, the transition state structures of compounds 1-3 involve synchronous aromatic transition structures, but there is no significant difference between their calculated synchronicity indices. The optimized geometries for the transition state structures of the decomposition reactions of compounds 1-3 consist in chair-like six-membered rings. The variation of the calculated activation entropy (Delta S (not equal)) values can not be justified by the decrease of Delta[eta(GS)-eta(TS)] parameter from compound 1 to compound 3. On the other hand, dipole moment differences between the ground and transition state structures [Delta(A mu (TS)-A mu (GS))] decrease from compound 1 to compound 3. Therefore, the electrostatic model associated with the dipole-dipole interactions justifies the increase of the calculated Delta G (not equal) values from compound 1 to compound 3. The correlations between Delta G (not equal), Delta[eta(GS)-eta(TS)], (Delta S (not equal)), k(T), electrostatic model, and structural parameters have been investigated.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Anticancer Investigation of Platinum and Copper-Based Complexes Containing Quinoxaline Ligands
    (Elsevier, 2022) El-Beshti, Hager Sadek; Yildizhan, Yasemin; Kayi, Hakan; Cetin, Yuksel; Adiguzel, Zelal; Gungor-Topcu, Gamze; Ozalp-Yaman, Seniz
    This research focuses on synthesis and anticancer activity of trans-[(dichloro)bisdipyridlquinoxalino] and [(dichloro)bisdithienylquinoxalino]copper(II)/platinum(II) compounds as prodrug candidates. The binding interaction of these compounds with calf thymus DNA (CT-DNA) and human serum albumin (HSA) of the complexes were assessed with UV titration, thermal decomposition, viscometric, and fluorometric measurements. The nature of the binding of the complexes on DNA were revealed as electrostatic interaction between the cationic metal complexes ion and the negative phosphate groups of CT-DNA upon removal of the counter ion, chloride. In addition, our complexes induced a surface contact through the hydrophobic region of protein. Antitumor activity of the complexes against human glioblastoma A172, LN229, and U87 cell lines and human lung A549, human breast MDA-231, human cervix HeLa, and human prostate PC-3 cell lines were investigated by examining cell viability, oxidative stress, apoptosis, and migration/invasion. Cytotoxicity of the complexes was evaluated by MTT test. The U87 and HeLa cells were investigated as the cancer cells most sensitive to our complexes. The exerted cytotoxic effect of dipyridlquinoxalino and dithienylquinoxalino copper(II)/platinum(II) complexes was attributed to the formation of the reactive oxygen species in vitro. It is clearly demonstrated that trans-[(dichloro)bisdithenylquinoxalino]copper (II) (Cu(dtq)) has the highest DNA degradation potential and anticancer effect among the tested complexes by leading apoptosis. Wound healing and invasion analysis results also supported the anticancer activity of Cu(dtq). (C) 2021 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Capture of Carbonyl Sulfide by Organic Liquid Mixtures: a Systematic Dft Investigation
    (Amer Chemical Soc, 2021) Abduesslam, Mahmoud; Kayi, Hakan
    Potential use of organic liquid mixtures consisting of amines, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU), 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG), and linear alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol) in the capture of carbonyl sulfide is comprehensively and systematically investigated by density functional theory calculations at the omega B97X-D3/6-311+ +G(d,p) level of theory. In total, eighteen different systems as a combination of amines and alcohols are taken into account. A modified single-step, termolecular reaction mechanism among amine, alcohol, and carbonyl sulfide is considered. The findings from structural, thermodynamic, and kinetic analyses indicated that suggested reaction mechanisms for the eighteen different systems being studied are thermodynamically feasible, and the organic liquid mixture of BTMG with methanol yields the lowest energy barrier and the highest reaction rate constant in the capture of carbonyl sulfide.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 9
    Innovative Carbon Dioxide-Capturing Organic Solvent: Reaction Mechanism and Kinetics
    (Wiley-v C H verlag Gmbh, 2017) Orhan, Ozge Yuksel; Tankal, Hilal; Kayi, Hakan; Alper, Erdogan
    The reaction rates of CO2 with an innovative CO2-capturing organic solvent (CO2COS), consisting of blends of 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG) and 1-propanol, were obtained as function of BTMG concentration and temperature. A stopped-flow apparatus with conductivity detection was used. The reaction was modeled by means of a modified termolecular reaction mechanism which resulted in a second-order rate constant, and activation energies were calculated for a defined temperature range. Quantum chemical calculations at the B3LYP/6-31G(d) level also produced the activation energy of this reaction system which strongly supports the experimental findings.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 7
    Natural Bond Orbital, Nuclear Magnetic Resonance Analysis and Hybrid-Density Functional Theory Study of Σ-Aromaticity in Al2f6< Al2cl6< Al2br6< and Al2i6<
    (Springer, 2013) Nori-Shargh, Davood; Kayı, Hakan; Yahyaei, Hooriye; Mousavi, Seiedeh Negar; Maasoomi, Akram; Kayi, Hakan; Kayı, Hakan; Chemical Engineering; Chemical Engineering
    Natural bond orbital (NBO), nuclear magnetic resonance (NMR) analysis and hybrid-density functional theory based method (B3LYP/Def2-TZVPP) were used to investigate the correlation between the nucleus-independent chemical shifts [NICS, as an aromaticity criterion], sigma (Al(1)-X2(b)) -> sigma*(Al(3)-X4(b)) electron delocalizations and the dissociation energies of Al2F6, Al2Cl6, Al2Br6 and Al2I6 to 2AlX(3) (X = F, Cl, Br, I). The results obtained showed that the dissociation energies of Al2F6, Al2Cl6, Al2Br6 and Al2I6 decrease from Al2F6 to Al2I6. Like aromatic molecules, these compounds have relatively significant negative NICSiso(0) values. Clearly, based on magnetic criteria, they exhibit aromatic character and make it possible to consider them as sigma-delocalized aromatic species, such as Mobius sigma-aromatic species. The sigma-aromatic character which is demonstrated by their NICSiso(0) values decreases from Al2F6 to Al2I6. The NICSiso values are dominated by the in-plane sigma(22) (i.e., sigma(yy,) the plane containing halogen atoms bridged) chemical shift components. The increase of the NICSiso values explains significantly the decrease of the corresponding dissociation energies of Al2F6, Al2Cl6, Al2Br6 and Al2I6. Importantly, the NBO results suggest that in these compounds the dissociation energies are controlled by the stabilization energies associated with sigma (Al(1)-X2(b)) ->sigma*(Al(3)-X4(b)) electron delocalizations. The decrease of the stabilization energies associated with sigma (Al(1)-X2(b)) ->sigma*(Al(3)-X4(b)) electron delocalizations is in accordance with the variation of the calculated NICSiso values. The correlations between the dissociation energies of Al2F6, Al2Cl6, Al2Br6 and Al2I6, sigma (Al(1)-X2(b)) ->sigma*(Al(3)-X4(b)) electron delocalizations, natural atomic orbitals (NAOs) and NICSiso values have been investigated.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Radicalic Cleavage Pathway and Dna Docking Studies of Novel Chemotherapic Platinum Agent of 5,6-Di
    (Pergamon-elsevier Science Ltd, 2019) El Hag, Rabia; Abdusalam, Mohamed Musbah; Acilan, Ceyda; Kayi, Hakan; Ozalp-Yaman, Seniz
    A new Pt(II) complex of the general formula ([PtCl2(L)]center dot H2O), where L is 5,6-di-2-thienyl-2,3-dihydropyrazine is synthesized as a potential antitumor agent and its structure is elucidated using a variety of physical and chemical procedures. DNA attaching ability of the complex is studied spectroscopically. UV and fluorometric titration, viscometric measurements and thermal decomposition studies agreed that two binding mode of actions, covalent and non-covalent bindings, are possible simultaneously. DNA helix cleavage studies clearly indicated OH center dot radical pathway in the presence of the reducing agent. Quantum mechanical calculations are carried out to call the minimum energy structures of the ligand and the complex, and to determine the FTIR, H-1 NMR and UV-Vis spectra using the density functional theory (DFT) at the B3LYP/LANL2DZ level of theory. Calculated geometrical parameters for the complex indicated a square-planar structure around the metallic center through the dithiopyridyl ring and two chlorine atoms. The minimum energy structure of the complex obtained from DFT conformational analysis is used in docking studies to investigate complex-DNA binding mechanisms. The complex interacts with DNA through three different mechanisms, namely, intercalation, covalent and electrostatic interaction. The most stable mode of interaction with lowest binding energy (-333.6 kcal/mol) was intercalation mode. Comparisons between theoretical and experimental findings are performed and a good agreement is obtained. (C) 2019 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Conformational Behaviors of Trans-2,3 Trans-2,5 a Complete Basis Set, Hybrid-Density Functional Theory Study and Natural Bond Orbital Interpretations
    (Springer, 2014) Nori-Shargh, Davood; Kayı, Hakan; Mousavi, Seiedeh Negar; Kayi, Hakan; Kayı, Hakan; Chemical Engineering; Chemical Engineering
    Complete basis set CBS-4, hybrid-density functional theory (hybrid-DFT: B3LYP/6-311+G**) based methods and natural bond orbital (NBO) interpretations have been used to examine the contributions of the hyperconjugative, electrostatic, and steric effects on the conformational behaviors of trans-2,3-dihalo-1,4-diselenane [halo = F (1), Cl (2), Br (3)] and trans-2,5-dihalo-1,4-diselenane [halo = F (4), Cl (5), Br (6)]. Both levels of theory showed that the axial conformation stability, compared to its corresponding equatorial conformation, decreases from compounds 1 -> 3 and 4 -> 6. Based on the results obtained from the NBO analysis, there are significant anomeric effects for compounds 1-6. The anomeric effect associated with the electron delocalization is in favor of the axial conformation and increases from compounds 1 -> 3 and 4 -> 6. On the other hand, dipole moment differences between the axial and equatorial conformations [Delta(mu(eq) - mu(ax))] decrease from compounds 1 -> 3. Although Delta(mu(eq)-mu(ax)) parameter decreases from compound 1 to compound 3, the dipole moment values of the axial conformations are smaller than those of their corresponding equatorial conformations. Therefore, the anomeric effect associated with the electron delocalizations (for halogen-C-Se segments) and the electrostatic model associated with the dipole-dipole interactions fail to account for the increase of the equatorial conformations stability on going from compound 1 to compound 3. Since there is no dipole moment for the axial and equatorial conformations of compounds 4-6, consequently, the conformational preferences in compounds 1-6 is in general dictated by the steric hindrance factor associated with the 1,3-syn-axial repulsions. Importantly, the CBS-4 results show that the entropy difference (Delta S) between the equatorial axial conformations increases from compounds 1 -> 3 and 4 -> 6. This fact can be explained by the anomeric effect associated with the electron delocalization which affects the C-2-Se bond orders and increase the rigidity of the corresponding rings. The Gibbs free energy difference values between the axial and equatorial conformations (i.e. Delta G(ax-ax) and Delta G(eq-eq)) of compounds 1 and 4, 2 and 5 and also 3 and 6 have been calculated. The correlations between the anomeric effect, electrostatic model, Delta G(eq-ax), Delta G(ax-ax), Delta G(eq-eq), bond orders, dipole-dipole interactions, structural parameters and conformational behaviors of compounds 1-6 have been investigated.