A Theoretical Investigation of 4,7-Di(furan Donor-Acceptor Type Conjugated Polymer
No Thumbnail Available
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Quantum chemical calculations are performed using density functional theory (DFT) to investigate the HOMO-LUMO energy gap of the 4,7-di(furan-2-yl)benzo[c][1,2,5]selenadiazole-based (FSeF) donor-acceptor type conjugated polymer which ascertains the optoelectronic properties and plays a crucial role, especially in polymeric solar cell applications. In this paper, the most stable conformers of the FSeF monomer and its corresponding oligomers are investigated at the B3LYP/Def2TZV and B3LYP/LANL2DZ levels of theory, and their molecular structures are revealed. The band gap of the polymer is determined by linear-fitting and extrapolation of the DFT data. This gap is found to be 1.44 eV and 1.45 eV by the B3LYP/Def2TZV, and B3LYP/LANL2DZ with PCM calculations, respectively. Our theoretical findings related to the band gap of the FSeF polymer (PFSeF) are in good agreement with other experimental studies in the literature and, hence, the theoretical methods used in this study are promising for the design of similar donor-acceptor type novel conjugated polymers. (C) 2014 Elsevier B.V. All rights reserved.
Description
Kayi, Hakan/0000-0001-7300-0325; /0000-0002-6220-6288
Keywords
Polymer solar cells, DFT, Band gap, Donor-acceptor-donor, Furan, Benzoselenadiazole
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q3
Scopus Q
Q3
Source
Volume
1054
Issue
Start Page
38
End Page
45