Projeler
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14411/26
Browse
Browsing Projeler by Issue Date
Now showing 1 - 20 of 56
- Results Per Page
- Sort Options
Research Project Elektrokatalitik Amonyak Üretimi için Ce Katkılı Lafeo3 Perovskit Malzemesinin GeliştirilmesiAmmonia is the second most produced chemical worldwide, which has a wide range of uses in the production of cleaning products, nitrogen-containing chemicals and explosives in sectors such as energy, cooling, textile, fertilizer, medicine. Also, a good source of hydrogen, ammonia has the potential to play an important role in the future hydrogen economy. Ammonia production has thermodynamic limitations and is commercially produced by the Haber-Bosh process at high pressure and high temperature. Electrocatalytic ammonia production processes eliminate thermodynamic limitations and provide ammonia production at atmospheric pressure. Studies on ammonia production by using solid oxide conductors are still ongoing, and research using oxide conducting electrolytes are limited. Ammonia production in oxide conducting electrolytes provides thermodynamically an advantage over the Haber-Bosh process, but the cathode catalyst is also very important for the development of the membrane electrode system. The catalyst to be used in oxide conducting electrolyte is expected to be active for ammonia production, to have high ionic and electrical conductivity, and to have high strength and stability under operating conditions. In addition, the compatibility of the electrolyte material and the thermal expansion coefficient of the catalyst to be used in the system is another important parameter. Perovskite materials have the potential to have these properties, and the properties of perovskites can be improved by adding various metals to their structure. Electrocatalytic studies in the literatüre widely use yttria stabilized zirconia (YSZ) stabilized, which can easily be obtained commercially, as the solid oxide electrolyte material. Within the scope of the proposed project, LaFeO3 that has thermal expansion coefficient close to YSZ will be synthesized and the effectof doping with Ce in different ratios on the katalyst properties will be examined by characterization methods. There are currently no studies in literatüre that use of La1-xCexFeO3 cathode catalyst for the production of ammonia in oxide conducting electrolyte system. As a result of the study, the development of an active and selective cathode catalyst with high ionic and electrical conductivity, compatible with YSZ electrolyte, for the production of ammonia using solid oxide electrolyte will contribute to the literature. Outcomes of this project are planned to be published in national/ international journals and/or presented in national/international conferences.Research Project Synthesis and Polymerization of Monomers Possessing Chemiluminescence Properties and Their Application AreasA novel class of chemiluminescence (KL) compounds was designed, synthesized and characterized; 2,3-dihydro-thieno[3,4-d]pyridazine-1,4-dione (T-Lum), 2,3-dihydro-furo[3,4-d]pyridazine-1,4-dione (FLum) and 2,3-dihydro-pyrrolo[3,4-d]pyridazine-1,4-dione (P-Lum). The KL reaction of the compounds in alkali medium was examined by using hydrogen peroxide and potasium permanganate oxidants and a possible KL mechanism was investigated. Synthesized compounds are especially sensitive to Fe+3 ion and this property makes them amenable to use as iron sensors. Also, the sensitivity of these materials towards iron makes them a promising candidate in forensic area to detect trace amount of blood at crime scene. Compounds are also sensitive both iron and blood samples even at lower concentration. By using the sensitivity of compounds towards hydrogen peroxide, the detection of many analytes will be possible. Beside the KL property, the electrochemiluminescence (EKL) property of the materials makes them very precious. Since the oxidation of pyridazine ring occurs before the aromatic rings, electropolymerization of the functionalized pyrrole, furan and thiophene compounds with pyridazine rings were not possible. To overcome this problem, new compounds, which have lower oxidation potential than that of pyridazine ring, were designed, synthesized and characterized; 5,7-di-tthiophen-2-yl-2,3-dihydro-thieno[3,4- d]pyridazine-1,4-dione (TTT-Lum) and 5,7-di-ethylenedioxythiophene-2-yl-2,3-dihydro-thieno[3,4- d]pyridazine-1,4-dione (ETE-Lum). The materials synthesized in the form of donor-acceptor-donor exhibit both KL and EKL properties, which makes them promising candidates in the analytical chemistry and forensic science. Compounds were polymerized successfully without oxidizing pyridazine ring via electrochemical polymerization (only neat BF3-Et2O solution or 0.1 M LiClO4 or 0.1 M tetrabutylammonium perchlorate dissolved in acetonitrile containing 5% of BF3-Et2O by volume ) and the electrochemical and optical properties were investigated. Electroactive and electrochromic polymeric materials, exhibiting reversible redox behaviours, have lower band gaps between 1.6 and 1.7 eV. Also, the polymer films are very stable; the electroactivity and the EKL properties were remain unchangeable after many cycles. Furthermore, the soluble polymer films in alkali medium with their KL properties will attract many attention in the academic areas.Research Project Sürekli Nanomalzeme Üretimi için Alev Aerosol Reaktör Tasarımı, Kontrolü ve SimülasyonuDue to its advantages compared to the wet chemistry methods, Flame Aerosol Technology is used to produce 90% (by volume) of the commercial nanomaterials continuously in a faster, cheaper way, and in a single step [1-2]. Evolved by combining combustion and aerosol technologies, a large span of materials from salts to metal oxides can be produced by this method [3]. In this technology, the most important issue is to produce the desired phase in the desired purity and morphology, and to understand the effect of the process parameters that control these properties. This is mostly because it takes place at very high temperature, where momentum, heat and mass transfer phenomena take place simultaneouly, as well as the combustion of fuel and the reaction of the metal salts in the flame. In order to apply this fast and high temperature process to the industrial scale, there is a need for well controlled laboratory experiments that allows to produce models which can be used to simulate the experimental results. In this proposal, a well controlled flame reactor will be designed, and the effect of the operation conditions on the final nano particle size, morphology and crystal phase will be investigated. The aim is to control the process conditions in a way that allows the tailor-made nanoparticles especially for heterogeneous catalytic applications. Computational Fluid Dynamics package FLUENT will be used along with a user defined “population balance” model in order to estimate the nanoparticle size, and compared with the experimental results. A new reactor will be designed and constructed with the help of the simulation, and metal oxides (e.g. TiO2, Pd/Co3O4 ) will be produced under different operating conditions. The nanoparticles produced will be characterized for their size and morphology, and the validity of the simulation model will be checked.Research Project Plastikleştirilmiş Poli(laktik Asit)’in Alev Dayanımının Fosfor Bazlı Katkı Maddeleri ile GeliştirilmesiThe aim of this study is to improve the flame resistance and toughness of PLA by adding small amounts of different flame retardant additives and plasticizers at the same time. Poly(ethylene glycol) (PEG) was used as a plasticizer. Phosphate-based chemicals as flame retardant additives; ammonium polyphosphate (APP), boron phosphate (BP) and tri-phenyl phosphate (TPP) were used. Within the scope of the project, the synergistic effects of the double and triple compositions of these flame retardant additives were also examined. The mixtures are produced by melt blending and injection molding methods. The effect of the type and composition of flame retardant additives on the properties of PLA composites was determined by various mechanical, thermal and flammability tests.Research Project Alan Özelinde Sosyalleştirme Yaklaşımı Çerçevesinde Etkili Ebeveynlik: Annenin Duygusal Erişilebilirliği ile Gelişimsel Çocuk Çıktıları Arasındaki İlişkiThis study aims to examine effective parenting within the framework of the domains-of_x0002_socialization approach. Three separate studies were carried out. In the first study, Domain_x0002_Specific Parenting Interview (DSPI) was developed to measure parenting quality in different socialization domains and its psychometric properties were examined. The deductive content analysis of the DSPI was carried out in the second study. In the third study, the replicability of the first study was tested, the interactions between different socialization domains were examined qualitatively, and the relations of mothers' knowledge on effective parenting and the quality of their parenting behaviors with developmental child outcomes were examined. The participants of the first study consisted of 82 mothers with children between 35-76 months. The participants of the second study consisted of 50 mothers, which were randomly selected from the data set of the first study. The participants of the third study consisted of 141 mothers and fathers, who have children aged between 47-72 months. The findings of the first study provided evidence that DSPI is a valid and reliable measurement tool. The qualitative findings of the second study showed that the domains-of-socialization approach and the daily life interactions of mother-child dyads were mostly consistent. The third study showed that the quality of parenting behaviors in different socialization domains were related to various child outcomes through emotion regulation and inhibitory control.Research Project Çinko Borat Üretim Teknolojisinin Geliştirilmesi ve Alev Geciktirici Olarak Kullanım Alanlarının AraştırılmasıWithin the scope of the project, 3.5 moles of crystalline aqueous zinc borate synthesis was made in a batch and continuous system, and the zinc borate produced was used in the production of polymer composites. Pilot production of zinc borate, which was synthesized within the scope of the project and whose optimum production parameters were determined, was carried out and the optimum values of the pilot production processes were determined. Zinc borate, whose pilot production has been successfully completed, is used as a fire retardant in wood and plastics. The industrialization of the pilot product was completed by transferring the production right to the private sector.Research Project (tr)ultrasonik Titreşim Destekli Frezelemenin Işlenmesi Zor Süper Alaşım Havacılık Malzemelerinde Nanoakışkan Minimum Miktar Yağlama Yöntemi ile Birlikte Incelenmesi/(eng)ınvestigation On The Effects Of Multi-axis Ultrasonic Vibration-assisted Milling With Nanofluid Minimum Quantity Lubrication On Difficult-to-cut Materials Used İn Aerospace IndustriesDue to the desired material properties in the aerospace sector, Ti-6Al-4V and Inconel 718 superalloys are commonly utilized. However, due to properties such as low thermal conductivity, high chemical interaction tendency, and resistance to wear, these materials pose significant challenges in machining processes, often characterized as "difficult-to-cut" materials. This project aims to experimentally investigate the combined use of Ultrasonic Vibration Assisted Machining (UVAM) and Nanofluid Minimum Quantity Lubrication (NMQL) techniques to improve the machining performance of Ti-6Al-4V and Inconel 718 superalloys, which are difficult-to-cut materials commonly employed in the aerospace sector. Within this scope, various cooling methods including conventional machining with UVAM, dry cutting with NMMY, conventional cutting fluid, and pure-MQL are comparatively studied, and the obtained results are analyzed. Three different nanofluids, namely Al2O3, CuO, and Al2O3-CuO (hybrid), are prepared and utilized in experiments when employing the NMMY technique. Machining performance criteria are determined as cutting forces, surface roughness, surface topography, surface texture, geometric accuracy, tool wear, and subsurface plastic deformation measurements. According to the results obtained, it is found that when UVAM and NMMY techniques are used together, the combination yields the highest efficiency in machining performance compared to other methods for both Ti-6Al-4V and Inconel 718 materials. Furthermore, among the NMMY conditions, the hybrid (Al2O3-CuO) usage provides the best results, followed generally by CuO and then Al2O3 added nanofluids. Based on the information and data obtained in this project, it is clearly evident that the yet underutilized UVAM and NMMY techniques, both separately and together, can be applied more efficiently in milling Ti-6Al-4V and Inconel 718 materials compared to traditional methods. This is anticipated to contribute to the aerospace manufacturing sector.Research Project Kişiselleştirilmiş ve Modüler Sosyal Robot Tasarımı İçin Yazılım Platformu Geliştirilmesi ve UygulanmasıIn this project, it is aimed to develop an interactive and conceptual design platform that can be used to develop personalized and modular social robots with the participatory design method and to apply it to physical robot models that serve as technology demonstrations.Research Project Synthesis, Characterization And Applications Of Various Aromatic Polythioureas Via Multicomponent Polymerization/çok Bileşenli Polimerizasyon Yöntemi ile Farklı Aromatik Politiyoürelerin Sentezi, Karakterizasyonu ve UygulamalarıIn recent years, multicomponent polymerization (MCP) method has attracted the attention of researchers due to its simple operation, high atom economy, high polymerization efficiency and high molecular weight of polymers without using catalyst under moderate conditions. In the MCP method used in the synthesis of different polythioamides and polythioureas, one of the reactants is aliphatic amines and aromatic amines are not used directly. Due to this reason, in polythioamide syntheses, it is seen that aromatic diamines do not react with alkynes in the presence of elemental sulfur and therefore they are converted firstly to aromatic diisocyanides and this increases the cost of synthesis. There is no study on the use of aromatic diamines directly in the synthesis of polythioureas. In the light of this information, it is aimed to use the MCP method which is thought to be an economic and effective method for the use of elemental sulfur and aromatic diamine directly to obtain well defined, functional and workable polymeric structures without using catalyst in the project. In the MCP method, diisocyanides which are more reactive than the dialkyne reactant used previously will be used. The reactivity of diisocyanides to aromatic amines was supported by literature data and preliminary studies performed by our group. In addition, elemental sulfur, one of the most abundant elements in the world, is a non-toxic and stable solid under normal conditions and is an inexpensive substance that is readily available even at high purity grades. The use of aromatic diamines directly with elemental sulfur is very interesting in terms of practical, cost-effective and synthetic compatibility. With the use of aromatic diamines in the MCP method, the gateway for the synthesis of different polythioureas will be further expanded. For this purpose, the synthesis of 10 different polythioureas shown below will be carried out and characterization of the obtained products (NMR, FTIR, GPC, SEM, UV-Vis, DSC, TGA) will be performed. The data obtained will be examined comparatively with the methods used before for the synthesis of polythioureas. Due to today's polluted environment and limited energy reserves, it becomes important to develop highly efficient renewable technologies, green energy sources and environmentally friendly methods for environmental remediation and energy production. In this direction, hydrogen production becomes so important in the field of energy. In addition, the removal of heavy metals found in nature and organic matter in waste water is of great importance in environmental remediation. From this point of view, the preparation of nanocatalysts that will allow hydrogen production and removal of organic substances and materials that provide heavy metal removal attracts the attention of scientists. Thanks to the thiourea functional groups in the structure of different polythioureas to be synthesized by the MCP method, it can be used in mercury treatment (due to the ability of the thiourea groups and mercury ions to be complex) as well as to be used as support materials for the production of silver, palladium and copper nanoparticles. In this respect, firstly mercury removal capacity of the prepared polymers will be investigated. Then, the polymer-metal nanoparticle hybrid materials (4 different structures, polymer/AuNPs, polymer/AgNPs, polymer/CuNPs and polymer/PdNPs)) will be obtained by adding gold, silver, copper and palladium nanoparticles (separately) onto the polymer having the highest metal ion-holding capacity. The stability, catalytic activity and the effect of the interaction on the catalytic activity of the polymer/metal nanoparticle hybrid materials will be investigated in hydrogeneration from amine borane and photocatalytical removal of dye molecules founded in waste waters, respectively.Research Project Donör-akseptör Düzeninde Yeni Bir Bileşik Grubununtasarımı, Sentezi ve İletken Polimerlerinin Uygulama AlanlarıDonor-acceptor-based electrochromic polymers, unknown in the literature, were synthesized and the optical and electrochemical properties of these materials were examined. In this study, in which both the donor effect and the acceptor effect were examined, soluble and processable materials with colors such as green, blue, cyan and black, although very few in number in the literature, were synthesized which are indispensable for their application areas. Necessary characterization studies have been carried out for the anticipated technological applications.Research Project Synthesis and Applications of New Conjugated Polymeric Materials Based on CarboraneCombination of conjugated polymers and carborane units under the same roof was taken place recently, for the first time in 2003. In very few number of studies in the literature, it was reported that carborane units gave thermal, mechanical, optical and electrochemical stability to the condujugated polymers. In this study, in order to overcome the problems faced by the industrial field of conjugated polymers (insolubility, thermal, mechanical, optical and electrochemical instability, etc.) the inorganic and organic units will be melted in the same pot for producing new carborane based polymeric materials. In the first two years of the project, initially carborane based electron donor-acceptor-donor (D-A-D) type new inorganic-organic hybrid monomers will be designed and synthesized and then soluble conjugated polymers (low band gap, reversible electronic and optical properties, n- and/or p-type doping behavior, fast switching of various redox states and different colors and environmetally and thermally stable novel florescent conjugated polymers) will be tried to obtain by use of electrochemical and chemical methods. While alkyl substituted 3,4-propylenedioxythiophene and carbazole units will be used as D unit, carborane units will be used as A unit. Tetrabutylammonium salts (perchlorate, tetrafluoroborate and hexafluorophosphate) as the supporting electrolyte and acetonitrile, dichloromethane and/or propylene carbonate will be used as the solvent in the electrochemical polymerization. For the chemical polymerization, Stille Coupling, anhydrous FeCl3 and / or CuI oxidant and/or Yamamoto type Ni (0) dehalogenation polymerization techniques will be used. After the investigation of the electrochemical, optical and thermal properties of the obtained polymeric materials, studies for the industrial and technological applications (electrochromic devices and light emitting diodes (LEDs)) will be done at Atılım University and METU by experienced teams in the last two years of the project. When the materials designed in the project are moved successfully to the industrial fields such as electrochromic devices and LED applications, it will be brought to a solution to an industrial problem by using carborane chemicals. As a result, it will be the primary purpose and goal of our project to overcome the problem faced by industrial areas (electrochromic devices and LEDs) with the products based on special carboranes, which can be synthesized in our country.Research Project Lineer Olmayan Üçlü Schrödinger Denklemi İçin Yapı Koruyan Sayısal YöntemlerA nonlinear implicit energy-conserving scheme and a linearly implicit mass-conserving scheme are constructed for the numerical solution of a three-coupled nonlinear Schrödinger equation. Both methods are second order. The numerical experiments verify the theoretical results that while the nonlinear implicit scheme preserves the energy, the linearly implicit method preserves the mass of the system. In addition, the schemes are quite accurate in the preservation of the other conserved quantities of the system. Elastic collision, creation of new vector soliton, and fusion of soliton are observed in the solitary wave evolution. The numerical methods are proven to be highly efficient and stable in the simulation of the periodic and solitary waves of the equation in long terms. Dispersive analysis of the equation and the numerical methoda is investigated.Research Project : Synthesis Of Electroactive Chemiluminescent Compounds And Polymers For Blood Detection İn Forensic/adli-tıpta Kan Teşhisi için Elektroaktif Kemilüminesans Bileşiklerin ve Polimerlerin SenteziProject Summary Combination of pyridazine based and chemiluminescent units with electroactive compounds and conjugated polymers have been taken place recently. These compounds and conjugated polymers have been reported to be used instead of luminol in order to detect blood traces in forensic science. These studies resulted in the birth of a new series of compounds so-called “luminol-type compounds”. In this study, a new series of chemiluminescent and conjugated trimeric compounds bearing pyridazine ring (Scheme 1) and their polymers will be synthesized and characterized structurally. Then, their chemiluminescent properties and forensic applications (blood detection) will be scrutinized. Scheme 1. Chemical structure of the compounds bearing redox active terminals and chemiluminescent pyridazine units In order to achieve this aim, phthalic anhydride will be utilized to synthesize the target molecules in three steps. This will be advantageous when compared the synthesis of some luminol derivatives which require multiple steps. After the completion of the structural characterization of the compounds, the chemiluminescent reactions of the compounds in basic medium will be tested firstly in the presence of only hydrogen peroxide and then together with various metal cations as catalyst by using a photomultiplier tube. If iron ion is found to exhibit a catalytic role in the chemiluminescent process, the application of blood trace detection in forensic will be studied. First of all, hemin as a hemoglobin analogue will be used to get a standard curve and then the blood samples will be studied. Obtained data will be compared with luminol and its derivatives and also the effect of the substituents (electron donating units: furan, thiophene and selenophene) of the compounds on the chemiluminescent process will be investigated. Next step will be the electrochemical polymerization of the compounds. The structural analyses of the polymers will be studied by using voltammetric and spectroscopic methods (cyclic voltammetry, NMR, FTIR, UV-vis, SEM, GPC, etc.). Chemiluminescent properties and forensic applications of their polymers will also be studied. Furthermore, since the polymers can be obtained as films via electrochemical polymerization, the electrochemiluminescent properties of these polymers will also be investigated. In addition to the polymers’ structural characterization, their electrochemical and optical properties will be studied to search for their possible opto-electronic applications. When the project has reached to its aims, a new series of the chemiluminescent compounds will be synthesized after only a few steps by starting with a cheap compound called phthalic anhydride. Unfortunately, the interest of the present luminol type compounds in the literature is limited since they are synthesized in multiple steps. A new series of the compounds will be obtained for the family of luminol type compounds when the syntheses of the compounds are realized. Due to the systematic synthesis of the compounds (Group 6A: O (furan), S (thiophene), Se (selenophene) atoms used for the same template compound), the effect of the electron donating units will be investigated on the chemiluminescent property. In conclusion, new compounds that are alternative to the luminol used in forensic application will be brought into the literature.Research Project Lisans Dersleri için Zaman Serisi ile Açılacak Şube Sayısı ve Kontenjanlarını Tahmin Eden Yapay Zekâ Sisteminin GeliştirilmesiThis project aims to address the problems experienced in traditional methods used in determining course quotas and number of sections in universities. This project, carried out with the support of Atılım University Undergraduate Research Projects, aims to optimize this process by using machine learning models. In the project, XGBoost and LightGBM were examined and their ability to make high-accurate predictions was tested.Research Project Sıfıraltı Sıcaklık Muhafaza Koşullarının Su Verilmiş 2024 Alüminyum Alaşımının Yaşlanma Davranışına ve Şekillendirilebilirliğine Etkisinin AraştırılmasıThe effect of storage conditions on the ageable 2024 Aluminum alloy, which was stored at different subzero temperatures (-12°C, -15°C, -18°C) after quenching, on the aging behavior and mechanical properties of the alloy at room temperature was investigated by performing hardness, tensile and formability tests. It was observed that the samples stored at -18°C hardened at a slower rate at room temperature compared to the samples stored at -15°C and -12°C. Using the data obtained, linear (Linear) and non-linear (Qudratic and Cubic) models were developed to predict the mechanical properties (hardness, yield and tensile strength) of the 2024 Aluminum alloy, depending on the subzero temperature storage conditions and the time spent at room temperature. It was concluded that the performance of Quadratic models obtained from the results of hardness tests was high, and Linear models could be used for future prediction. The results of the tensile tests showed that the Quadratic models have high performance and usability for future prediction. Finally, the relationship between yield strength and hardness values was examined. A 100% positive relationship was determined between hardness and yield strength values.Research Project Promoting Stakeholder Adherence To Mediterranean Diet On Campus Through Menu İnterventions And Social Marketing Strategies / Menü Müdahaleleri ve Sosyal Pazarlama Stratejileri ile Kampüste Paydaşların Akdeniz Diyetine Uyumunu GeliştirmekFood service comprises the production of meals consumed outside the home, including consumers from all age groups and in different sectors. This service sector has evolved through the years, providing an increasing number of meals, which have been drifting away from the Mediterranean Food Pattern. Food service is an important setting for public health interventions, educating consumers and modulating behaviours through the meals provided. Prior research on eating habits has mainly focused on a single stakeholder - typically consumers - and on a narrow set of outcome variables. Although these studies provide important clues about the determinants of adherence to food offer, research has yet to address this issue using an integrative approach of multiple stakeholders (e.g., the consumers, food providers, decisors) across a set of different variables. Also, intervention initiatives, usually act only on the environment without strategies that efficiently engage all the stakeholders involved. Social Marketing is one of the strategies, empirically verified, designed to promote change behavior, which contributions to health and well being of citizens are positively recognized by many. Establishing and managing long-term partnerships that include different groups of stakeholders - consumers, government, retailers and other players - are key elements in the application of mid and upstream social marketing to complex issues. This project, developed in Portugal, Turkey, and Croatia, aims to identify the compliance of food service menus with the Mediterranean Diet in public high education institutes canteens, pinpointing opportunities to intervene, namely: 1) promoting changes in the food offer addressing proximity to the Mediterranean Food Pattern, creating, and offering plant-based meals, with seasonable and local food products and 2) developing tailored social marketing strategies to engaging stakeholders to encourage healthier and sustainable food habits. It gathers a team comprised of nutrition experts on public health and food service, food technologists, gastronomy experts, psychologists, and marketers, with a vast experience and professional skills. To achieve the objectives researches will: 1) develop and index to evaluate compliance of menus with the Mediterranean Diet; 2) based on personal interviews, define priority stakeholders and define methodology for engagement; 3) evaluate perceptions, barriers and facilitators through self-administered surveys and in-depth interviews; 4) develop of a 1-month meal plan framework; 5) develop tools concerning the concept premises to empower the catering employees and consumers to understand the proposed menu methodology; 6) develop a new food concept/product “student bag” (meal on the go) and test it for industry scale up; 7) use previous diagnose to develop social/emotional marketing strategies directed to stakeholders and consumers to achieve food behaviour change and 8) measure the impacts of the implemented strategies through a feasibility test. The project's main ambition is to change the food service paradigm, by creating and implementing a new healthy and sustainable food service concept that truly complies with the Mediterranean diet, as well as solutions that comply with consumers new needs, and also developing and implementing strategies that engage all the stakeholders with this concept. We expect to create the reference in terms of food offer that will be demanded by consumers of the next generations and the standpoint to inspire the other food service sectors/ settings achieving an effective and sustainable food offer change and positively influence food service consumers’ food pattern towards Mediterranean recommendations, while addressing the Sustainable Development Goals (3 - good health and 12 - responsible consumption and production; 17 - partnerships for the goals).Research Project Yerli Modüler 350 Ton Kapasiteli Sondaj Kulesi Tasarımı ve İmalatıWith the proposed project, analysis, design, and prototype manufacturing of a domestic, modular, 350-ton drilling rig for oil, geothermal and natural gas drilling will be performed in accordance with international standards which will be recognized in the international arena for quality, functionality, price, etc.Research Project Design, Synthesis, Properties and Applications of Novel Processable Luminescent and Redox Active CompoundsLuminescence is the emission of electromagnetic radiation (in ultraviolet (UV), visible (Vis) or infrared (IR) regions) with no or little heat, which is produced by the transition of an electronically excited state intermediate generated by the application of an external stimuli to a lower (ground) state in order to release the excess energy. If the electronically excited state returns to the ground state from the lowest singlet excited state, it is called fluorescence or if it returns from the triplet excited state, it is called phosphorescence. The light emitted may be in UV and Vis regions as well as in IR region. Luminescent compounds have recently attracted considerable attention due to their practical applications in bio- and nanotechnological as well as materials sciences as chemosensors, electron and/or energy transfer systems, imaging agents, molecular machines and devices, molecular logic gates and so on. For that reason, the design, synthesis and characterization of novel luminescent compounds are highly concerned by first the synthetic organic chemists and as well as other communities all around the world. Herein, luminescent and redox active novel compounds (1-3) were designed, synthesized and characterized spectroscopically (UV-Vis, luminescence-fluorescence, FTIR, NMR, mass spectroscopy, combustion analysis, cyclic voltammetry). Furthermore, some applications of these novel compounds in analytical and/or material science (e.g. in forensic science, chemosensors) were investigated. In the last step of the work, these novel compounds were polymerized to give the corresponding polymeric materials, which were also characterized by spectroscopic methods.Research Project Kontrollü İlaç Salımı için Aljinat Nanotaşıyıcı Sistemler: İn Vitro Etkilerinin İncelenmesiThe-use-of nano-sized drug carriers (Nano-Carriers, NC) to increase the therapeutic effectiveness of drugs recently received great attention and emerged as a new research area. In this approach, the studies were revealed that, the drug loaded NCs increase the therapeutic efficiency while successfully reducing the systemic toxicity, although the previously recommended drug dose for patients decreases. On-the-other hand, results of the clinical applications of liposomal carriers, as micro-drug-carrier system, shown that the decrease in dosage, for the drugs in routine use, also decreases the-production of pharmaceutical raw materials and considerably reduces the-industrial energy consumption. Therefore, therapeutic applications of NCs can provide benefits in many aspects, including the improvement in patient’s life expectancy and quality; the-reduction-in the treatment and production costs reflected to patients, healthcare-providers and pharmaceutical industry. while NC-based applications emerged as-an-attractive research area, the-serious contributions -expected- are advancements in pharmaceutical and chemical industry-along-with the economic development of-countries. NCs-are-generally produced-in-bio-degradable-and nondegradable- forms. Among those, polymeric NCs, such as alginate-NC (ANC), has more significant therapeutic-features such as bio-compatibility-and-degradability. Particularly, the metal ions used as cross-binders (CB) for ANT production is also an advantage since the toxicity of metal ions is low compared to organic CBs. However, in the literature no comparative study is available for therapeutic activities and toxicities of ANTs produced with different metal CBs. Therefore, in this study, the aim is to produce highly bio-compatible- ANC with different methods and cross-binders, and-perform-comparative in-vitro evaluation for ANC-mediated enhancement of drug-release capabilities, therapeutic dose and efficacy of ANTs loaded-with-conventional and novel-therapeutics.Research Project Lityum-ıyon Pilde Bir Anot Olarak Katmanlı Titanyum Karbürün Ilk Prensip ÇalışmasıThere is an urgent need to find an anode material with excellent structural and electrical properties, high rate capability, and high capacity for use in Li-ion batteries. Mxene structured TiC3 can be proposed as a potential anode material for Li-ion batteries. This project aims to investigate the mechanical, thermal, and electronic properties of the TiC3 bilayer through Density Functional Theory (DFT) calculations.
- «
- 1 (current)
- 2
- 3
- »
