: Synthesis of Electroactive Chemiluminescent Compounds and Polymers for Blood Detection in Forensic/Adli-Tıpta Kan Teşhisi için Elektroaktif Kemilüminesans Bileşiklerin ve Polimerlerin Sentezi
Contributors
Funders
ID
Project Abstract
Project Summary Combination of pyridazine based and chemiluminescent units with electroactive compounds and conjugated polymers have been taken place recently. These compounds and conjugated polymers have been reported to be used instead of luminol in order to detect blood traces in forensic science. These studies resulted in the birth of a new series of compounds so-called “luminol-type compounds”. In this study, a new series of chemiluminescent and conjugated trimeric compounds bearing pyridazine ring (Scheme 1) and their polymers will be synthesized and characterized structurally. Then, their chemiluminescent properties and forensic applications (blood detection) will be scrutinized. Scheme 1. Chemical structure of the compounds bearing redox active terminals and chemiluminescent pyridazine units In order to achieve this aim, phthalic anhydride will be utilized to synthesize the target molecules in three steps. This will be advantageous when compared the synthesis of some luminol derivatives which require multiple steps. After the completion of the structural characterization of the compounds, the chemiluminescent reactions of the compounds in basic medium will be tested firstly in the presence of only hydrogen peroxide and then together with various metal cations as catalyst by using a photomultiplier tube. If iron ion is found to exhibit a catalytic role in the chemiluminescent process, the application of blood trace detection in forensic will be studied. First of all, hemin as a hemoglobin analogue will be used to get a standard curve and then the blood samples will be studied. Obtained data will be compared with luminol and its derivatives and also the effect of the substituents (electron donating units: furan, thiophene and selenophene) of the compounds on the chemiluminescent process will be investigated. Next step will be the electrochemical polymerization of the compounds. The structural analyses of the polymers will be studied by using voltammetric and spectroscopic methods (cyclic voltammetry, NMR, FTIR, UV-vis, SEM, GPC, etc.). Chemiluminescent properties and forensic applications of their polymers will also be studied. Furthermore, since the polymers can be obtained as films via electrochemical polymerization, the electrochemiluminescent properties of these polymers will also be investigated. In addition to the polymers’ structural characterization, their electrochemical and optical properties will be studied to search for their possible opto-electronic applications. When the project has reached to its aims, a new series of the chemiluminescent compounds will be synthesized after only a few steps by starting with a cheap compound called phthalic anhydride. Unfortunately, the interest of the present luminol type compounds in the literature is limited since they are synthesized in multiple steps. A new series of the compounds will be obtained for the family of luminol type compounds when the syntheses of the compounds are realized. Due to the systematic synthesis of the compounds (Group 6A: O (furan), S (thiophene), Se (selenophene) atoms used for the same template compound), the effect of the electron donating units will be investigated on the chemiluminescent property. In conclusion, new compounds that are alternative to the luminol used in forensic application will be brought into the literature.
Title
Project Principal Investigator
Project Coinvestigators
Keywords
Project Code
Project No
Project Start Date
Project End Date
Project Duration
Project Funder
Project Funding Program
Project Partners
Project Status
Handle URL
Description
Keywords
Adli-tıp, kemilüminesans, kan teşhisi, metal katyon, konjuge bileşikler, furan, tiyofen, selenofen.