Kaya, Murat

Loading...
Profile Picture
Name Variants
Kaya,Murat
Murat, Kaya
M., Kaya
Kaya M.
Kaya, Murat
K.,Murat
K., Murat
M.,Kaya
Kaya,M.
Murat Kaya
Job Title
Profesör Doktor
Email Address
muratkaya@atilim.edu.tr
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

54

Articles

36

Citation Count

1742

Supervised Theses

16

Scholarly Output Search Results

Now showing 1 - 10 of 54
  • Article
    Citation Count: 33
    Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins
    (Pergamon-elsevier Science Ltd, 2015) Aygar, Gulfem; Kaya, Murat; Ozkan, Necati; Kocabiyik, Semra; Volkan, Murvet; Chemical Engineering
    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that N alpha,N alpha-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3. (C) 2015 Elsevier Ltd. All rights reserved.
  • Article
    Citation Count: 5
    Synthesis, characterization and application of high sulfur content polymeric materials from fatty acids
    (Elsevier, 2023) Berk, Hasan; Kaya, Murat; Topcuoglu, Mert; Turkten, Nazli; Karatas, Yunus; Cihaner, Atilla; Chemical Engineering
    A new series of high sulfur content polymers containing various amounts of fatty acids (oleic acid (OA), linoleic acid (LA) and linolenic acid (LnA)) was synthesized via inverse vulcanization method and characterized successfully. In particular, the effect of double bonds and free alkyl chains on polysulfur copolymers has been investigated systematically by using OA with one double bond, LA with two double bonds and LnA with three double bonds. The copolymers with functional carboxylic acid groups are soluble in common organic solvents, processable and electroactive. Also, the usage of the copolymers was tested in the removal of methylene blue and as a cathode material in Li-S battery. Results showed that the polymers can be a potential material for use in dye removal.
  • Article
    Citation Count: 13
    Ruthenium Nanoparticles Supported on Reduced Graphene Oxide: Efficient Catalyst for the Catalytic Reduction of Cr(VI) in the Presence of Amine-Boranes
    (Wiley-v C H verlag Gmbh, 2020) Yurderi, Mehmet; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Kanbur, Yasin; Zahmakiran, Mehmet; Chemical Engineering
    Hexavalent chromium (Cr(VI)) is a toxic, mutagen and carcinogen contaminant exist in surface and groundwater, while its reduced form trivalent chromium (Cr(III)) is known as an essential element to normal carbohydrate, lipid and protein metabolism in nature. Addressed herein, for the first time, ruthenium nanoparticles supported on reduced graphene oxide (Ru@rGO) catalyze the reduction of aqueous Cr(VI) to Cr(III) in the presence of amine-boranes; ammonia-borane (AB; NH3BH3), methylamine-borane (MeAB; CH3NH2BH3), dimethylamine-borane (DMAB; (CH3)(2)NHBH3) as reducing agents under mild conditions (at room temperature and under air). Ru@rGO catalyst was reproducibly fabricated through a double-solvent method followed by wet-chemical reduction and characterized by using various spectroscopic and visualization techniques, which showed that the formation of well-dispersed and highly crystalline ruthenium(0) nanoparticles with a mean particle size of 2.7 +/- 0.9 nm on the surface of rGO. The catalytic performance of Ru@rGO was investigated in terms of activity and stability in the ammonia-borane assisted reduction of Cr(VI) to Cr(III), and the sum of the results gained from these catalytic tests revealed that Ru@rGO acts as both active (TOF=7.6 mol Cr2O72-/mol Ru.min) and stable (80% of its initial activity at 90% conversion at 5(th)reuse) heterogeneous catalyst in this significant catalytic transformation. This study also reports kinetic studies for Ru@rGO catalyzed Cr(VI) reduction in the presence of ammonia-borane depending on ruthenium ([Ru]), ammonia-borane ([AB]) concentrations and temperature to shed some light on the nature of the catalytic reaction and activation parameters.
  • Article
    Citation Count: 1
    Silver Nanoparticles Added Polymer Film Prepared by Electrochemical Route for Surface Enhanced Raman Scattering Applications
    (Electrochemical Soc inc, 2019) Khadim, Raisan; Uzun, Ceren; Cihaner, Atilla; Kaya, Murat; Chemical Engineering
    A simplemethod for the fabrication of stable and highly active surface enhanced Raman scattering (SERS) substrate by exploiting the optical properties of the silver nanoparticles (AgNPs) and organizational characteristics of the polymer is presented. Homogeneous distribution ofAgNPs is achieved with the usage of poly (4,7-di-2,3-dihydrothieno [3,4-b] [1,4] dioxin-5-yl-2,1,3 benzoselena diazole) (PESeE) film coated on the indium tin oxide glass (ITO) surface. The obtained structure ensured the emergence of a large number of hot spots where the localization of electromagnetic energy can result in enhancement of the Raman signal. The effect of the PESeE film thickness, the density of AgNPs added to the polymer film, and the concentration of silver ion solution on the morphology of the substrate and the enhancement of the SERS signal was revealed by using field emission scanning electron microscopy (FE-SEM) and SERS measurements. Enhancement power, homogeneity, and stability of the PESeE-AgNPs substrate were also investigated with measurement of the Raman probe. Spot-to-spot and batch-to-batch reproducibilities of the prepared substrate were calculated as 8.4%, and 10.2% (RSD %) respectively. Due to these properties, PESeE-AgNPs SERS substrate can be a good candidate for the detection and sensor application of various biological and chemical analytes. (C) 2019 The Electrochemical Society.
  • Article
    Citation Count: 8
    Thermally highly stable polyhedral oligomeric silsesquioxane (POSS)-sulfur based hybrid inorganic/organic polymers: synthesis, characterization and removal of mercury ion
    (Royal Soc Chemistry, 2022) Berk, Hasan; Kaya, Murat; Cihaner, Atilla; Chemical Engineering
    Elemental sulfur was copolymerized with octavinyl polyhedral oligomeric silsesquioxane (OV-POSS) cages in diglyme solution via the inverse vulcanization method and characterized using NMR and FTIR spectroscopic techniques. The polysulfur copolymer called poly(sulfur-random-octavinyl polyhedral oligomeric silsesquioxane) (poly(S-r-OV-POSS)) was cured successfully sequentially at 170, 200 and 230 degrees C without changing the structure of the POSS cages in the polymer backbone. Highly crosslinked poly(S-r-OV-POSS) polymer cured at 200 and 230 degrees C exhibited high thermal stability at high temperatures; the loss of the samples was only 10% weight at 400 degrees C and 27% at 800 degrees C. Finally, the feasibility of poly(S-r-OV-POSS) as an adsorbent for the removal of Hg(ii) ions, as an example of a toxic heavy metal, from an aqueous solution was investigated. Optimization of the pH of the solution and contact time was performed and almost all Hg(ii) ions were collected from the aqueous solution at pH = 7 in 1 h (99% adsorption).
  • Article
    Citation Count: 2
    Synthesis of N-polyethereal polypyrroles and their application for the preconcentration of rare earth ions
    (John Wiley & Sons inc, 2008) Koksel, Bahar; Cihaner, Atilla; Kaya, Murat; Volkan, Muervet; Onal, Ahmet M.; Chemical Engineering
    Conducting polymers containing polyether pseudocages (PI, PII, PIII) have been synthesized via chemical oxidation of 1,5-bis(1,1-pyrrole)-3-oxabutane (MI), 1,8-bis(I,I-pyrrole)-3,6-dioxahexane (MII), and 1,11-bis(1,1-pyrrole)-3,6,9-trioxaundecane (MIII) using anhydrous FeCl3 in CHCl3. Because as obtained polymer resins did not give any response toward any cations, they were reduced (undoped) using chemical reducing agents. Tetrabutylammonium hydroxide was found to be more effective in undoping to obtain more reproducible and reusable polymer resins. The undoped polymer resins were tried in the extraction of rare earth metal ions from the aqueous medium. Among them, only PIII resin removes La(III), Eu(III) and Yb(III) and can be employed for the preconcentration of these metal ions. For batch extraction of La(III), Eu(III) and Yb(III) at neutral pH values, percent recoveries of 98.0 +/- 1.0, 90.7 +/- 1.4, 87.3 +/- 4.0, respectively, has been obtained. The sorption capacity is found as 1.3 mg of La(III) per gram of PIII resin. The PIII resin could be reused at least five times without significant change in its sorption capacity. (c) 2008 Wiley Periodicals, Inc.
  • Article
    Citation Count: 7
    Nanohydrotalcite Supported Ruthenium Nanoparticles: Highly Efficient Heterogeneous Catalyst for the Oxidative Valorization of Lignin Model Compounds
    (Wiley-v C H verlag Gmbh, 2017) Baguc, Ismail Burak; Celebi, Metin; Karakas, Kadir; Ertas, Ilknur Efecan; Keles, Muhammed Nuri; Kaya, Murat; Zahmakiran, Mehmet; Chemical Engineering
    The catalytic transformation of lignocellulosic biomass derived chemicals into value-added chemicals under mild conditions remains a challenge in the fields of synthetic chemistry and catalysis. Herein, we describe a new heterogeneous catalyst system that efficiently works in the oxidative valorization of lignin model compounds. This new heterogeneous catalyst system comprised of nano-sized hydrotalcite (n-HT; Mg6Al2 (CO3)(OH)(16)) supported ruthenium(0) nanoparticles (Ru/ n-HT) was prepared by ion-exchange of [Ru(OH2)Cl-5](2-) anions with the extraframework CO32- anions of n-HT followed by their borohydride reduction (NaBH4) in water at room temperature. The characterization of Ru/n-HT was done by the combination of various spectroscopic and the sum of their results revealed that the formation of well-dispersed ruthenium(0) nanoparticles with a mean diameter of 3.2 +/- 0.9 nm on the surface of n-HT structure. The catalytic performance of Ru/n-HT in terms of activity, selectivity and stability was tested in the aerobic oxidation of cinnamyl, veratryl and vanillyl alcohols, which are important lignin model compounds used to mimic the propyl side chain, the phenolic and non-phenolic, respectively functional groups of lignin. We found that Ru/ n-HT nanocatalyst displays remarkable activity at high selectivity and almost complete conversion in these catalytic transformations under mild reaction conditions (at 373 K under 3 bar initial O-2 pressure).
  • Article
    Citation Count: 44
    Ruthenium(0) nanoparticles supported on magnetic silica coated cobalt ferrite: Reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane
    (Elsevier Science Bv, 2014) Akbayrak, Serdar; Kaya, Murat; Volkan, Murvet; Ozkar, Saim; Chemical Engineering
    Ruthenium(0) nanoparticles supported on magnetic silica-coated cobalt ferrite (Ru(0)/SiO2-CoFe2O4) were in situ generated from the reduction of Ru3+/SiO2-CoFe2O4 during the catalytic hydrolysis of ammonia-borane (AB). Ruthenium(III) ions were impregnated on SiO2-CoFe2O4 from the aqueous solution of ruthenium(III) chloride and then reduced by AB at room temperature yielding Ru(0)/SiO2-CoFe2O4 which were isolated from the reaction solution by using a permanent magnet and characterized by ICP-OES, XRD, TEM, TEM-EDX and XPS techniques. The resulting magnetically isolable Ru(0)/SiO2-CoFe2O4 were found to be highly reusable catalyst in hydrolysis of AB retaining 94% of their initial catalytic activity even after tenth run. Ru(0)/SiO2-CoFe2O4 provide the highest catalytic activity after the tenth use in hydrolysis of AB as compared to the other ruthenium catalysts. The work reported here also includes the formation kinetics of ruthenium(0) nanoparticles. The evaluation of rate constants for the nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles at various temperatures provides the estimation of activation energy for both reactions; E-a = 116 +/- 7 kJ/mol for the nucleation and E-a = 51 +/- 2 kJ/mol for the autocatalytic surface growth of ruthenium(0) nanoparticles. The report also includes the activation energy of the catalytic hydrogen generation from the hydrolysis of AB (E-a = 45 +/- 2 kJ/mol) determined from the evaluation of temperature dependent kinetic data and the effect of catalyst concentration on the rate of hydrolysis of AB. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation Count: 2
    Microporous vanadosilicate films with tailorable V4+/V5+ratio to achieve enhanced visible-light photocatalysis
    (Elsevier, 2021) Kuzyaka, Duygu; Uzun, Ceren; Yildiz, Ilker; Kaya, Murat; Akata, Burcu; Chemical Engineering
    This study investigates the changes induced into the photocatalytic activity under solar light irradiation upon changing the structural film properties and tailor the concentration of defects in microporous vanadosilicate AM6 films. For this purpose, the preparation of AM-6 films with different V4+/V5+ ratios and their utilization as photocatalysts for the decomposition of MB were carried out. Two approaches were used for obtaining AM-6 films with different V4+/V5+ ratios: altering the seed layer coating technique and altering the molar water content of the secondary growth gel. It was seen that dip coating method resulted in an increase in the thickness of the films and it was presumed that the adsorption of MB by AM-6 films was the predominant factor in photocatalytic activity. The second approach of increasing the molar water content of the secondary growth gel provided an increase in the defect concentration resulting in an enhanced photocatalytic activity under the solar light. In the current study, the defect concentration of the prepared films was determined by using XPS and Raman spectroscopy techniques. Accordingly, it was determined that the samples with lower amount V4+/V5+ ratio showed better photocatalytic activity under the solar light irradiation indicating that V5+ cations are responsible for the photocatalytic activity under visible light irradiation. This work provides methods of production of microporous films showing photocatalytic activity under visible light without the requirement of any post-synthesis treatments.
  • Article
    Citation Count: 32
    Hydroxyapatite-nanosphere supported ruthenium(0) nanoparticle catalyst for hydrogen generation from ammonia-borane solution: kinetic studies for nanoparticle formation and hydrogen evolution
    (Royal Soc Chemistry, 2014) Durak, Halil; Gulcan, Mehmet; Zahmakiran, Mehmet; Ozkar, Saim; Kaya, Murat; Chemical Engineering
    The development of readily prepared effective heterogeneous catalysts for hydrogen generation from ammonia-borane (AB; NH3BH3) solution under mild conditions still remains a challenge in the field of "hydrogen economy". In this study, we report our finding of an in situ generated, highly active ruthenium nanocatalyst for the dehydrogenation of ammonia-borane in water at room temperature. The new catalyst system consists of ruthenium(0) nanoparticles supported on nanohydroxyapatite (RuNPs@nano-HAp), and can be reproducibly prepared under in situ conditions from the ammonia-borane reduction of Ru3+ ions exchanged into nanohydroxyapatite (Ru3+@nano-HAp) during the hydrolytic dehydrogenation of ammonia-borane at 25 +/- 0.1 degrees C. Nanohydroxyapatite-supported ruthenium(0) nanoparticles were characterized by a combination of advanced analytical techniques. The sum of their results shows the formation of well-dispersed ruthenium(0) nanoparticles with a mean diameter of 2.6 +/- 0.6 nm on the surface of the nanospheres of hydroxyapatite by keeping the host matrix intact. The resulting RuNPs@nano-HAp are highly active catalyst in the hydrolytic dehydrogenation of ammonia-borane with an initial TOF value of 205 min(-1) by generating 3.0 equiv. of H-2 per mole of ammonia-borane at 25 +/- 0.1 degrees C. Moreover, they are sufficiently stable to be isolated and bottled as solid materials, which can be reused as active catalyst under the identical conditions of first run. The work reported here also includes the following results: (i) monitoring the formation kinetics of the in situ generated RuNPs@nano-HAp by hydrogen generation from the hydrolytic dehydrogenation of ammonia-borane as the reporter reaction. The sigmoidal kinetics of catalyst formation and concomitant dehydrogenation fits well to the two-step, slow nucleation, followed by autocatalytic surface growth mechanism, P -> Q (rate constant k(1)) and P + Q -> 2Q (rate constant k(2)), in which P is Ru3+@nano-HAp and Q is the growing, catalytically active RuNPs@nano-HAp; (ii) the compilation of kinetic data for the RuNPs@nano-HAp catalyzed hydrolytic dehydrogenation of ammonia-borane depending on the temperature and catalyst concentration to determine the dependency of reaction rate on catalyst concentration and activation parameters (E-a, Delta H-#, and Delta S-#) of the reaction.