Paralel Hibrit Elektrikli Aracın Güç Aktarma Organların Simülasyonu, Tasarımı ve Deney Düzeneği Kurulumu
Contributors
Funders
ID
Project Abstract
A parallel or mechanically coupled hybrid drivetrain has features that allow both the engine and the traction motor to apply their mechanical power in parallel directly to the drive wheels. The major advantages of a torque-coupling parallel configuration over a series configuration are (1) the non-necessity of a generator, (2) a smaller traction motor, and (3) only part of the engine power going through multi-power conversion. Hence, the overall efficiency can be higher than in the series hybrid. This project is studying the parallel configuration of a hybrid driveline both numerically and experimentally. The mathematical model of driveline was developed in Matlab/Simulink software. Power shifting between Internal Combustion Engine (ICE) and Electric Motor (EM) was carried out by using the appropriate control strategy during the different driving conditions (acceleration, deceleration, and braking). An experimental setup of driveline was established in the ICE laboratory of the Automotive Engineering Department of Atılım University. All experiments were done in controlled conditions. The states of the system (ICE speed, EM speed and torque, Dynamometer load, Battery package voltage, SOC) are measurable to apply a suitable power shifting control method. The Driveline model were tuned by using experimental data.
Title
Project Principal Investigator
Project Coinvestigators
Keywords
Project Code
Project No
Project Start Date
Project End Date
Project Duration
Project Funder
Project Funding Program
Project Partners
Project Status
Handle URL
Description
Keywords
Paralel Hibrit Araç, Güç Aktarma Organı, Enerji Yönetimi, Kontrol Stratejisi