2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 27Citation - Scopus: 31Generalized Extreme Shock Models and Their Applications(Taylor & Francis inc, 2020) Bozbulut, Ali Riza; Eryilmaz, SerkanIn the classical extreme shock model, the system fails due to a single catastrophic shock. In this paper, by assuming different arrival patterns of the shocks, two new types of extreme shock models are introduced. In these models, m possible sources may exert shocks on the system. Both models reduce to the classical extreme shock model when m = 1. Assuming phase-type distribution for times between successive shocks, we obtain survival functions and mean time to failure values of the system under new models. Two different optimization problems are also considered to determine the optimal number of sources.Article Citation - WoS: 12Citation - Scopus: 13A NEW SHOCK MODEL WITH A CHANGE IN SHOCK SIZE DISTRIBUTION(Cambridge Univ Press, 2021) Eryilmaz, Serkan; Kan, CihangirFor a system that is subject to shocks, it is assumed that the distribution of the magnitudes of shocks changes after the first shock of size at least d(1), and the system fails upon the occurrence of the first shock above a critical level d(2) (> d(1)). In this paper, the distribution of the lifetime of such a system is studied when the times between successive shocks follow matrix-exponential distribution. In particular, it is shown that the system's lifetime has matrix-exponential distribution when the intershock times follow Erlang distribution. The model is extended to the case when the system fails upon the occurrence of l consecutive critical shocks.

