Generalized extreme shock models and their applications

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

In the classical extreme shock model, the system fails due to a single catastrophic shock. In this paper, by assuming different arrival patterns of the shocks, two new types of extreme shock models are introduced. In these models, m possible sources may exert shocks on the system. Both models reduce to the classical extreme shock model when m = 1. Assuming phase-type distribution for times between successive shocks, we obtain survival functions and mean time to failure values of the system under new models. Two different optimization problems are also considered to determine the optimal number of sources.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Phase-type distributions, reliability, shock model

Turkish CoHE Thesis Center URL

Citation

21

WoS Q

Q4

Scopus Q

Source

Volume

49

Issue

1

Start Page

110

End Page

120

Collections