Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 39
    Citation - Scopus: 37
    MoS2-nanosheet/graphene-oxide composite hole injection layer in organic light-emitting diodes
    (Korean inst Metals Materials, 2017) Park, Minjoon; Thang Phan Nguyen; Choi, Kyoung Soon; Park, Jongee; Ozturk, Abdullah; Kim, Soo Young
    In this work, composite layers comprising two-dimensional MoS2 and graphene oxide (GO) were employed as hole injection layers (HILs) in organic light-emitting diodes (OLEDs). MoS2 was fabricated by the butyllithium (BuLi) intercalation method, while GO was synthesized by a modified Hummers method. The X-ray diffraction patterns showed that the intensity of the MoS2 (002) peak at 14.15A degrees decreased with increase in GO content; the GO (001) peak was observed at 10.07A degrees. In the C 1s synchrotron radiation photoemission spectra, the contributions of the C-O, C=O, and O-C=O components increased with increase in GO content. These results indicated that GO was well mixed with MoS2. The lateral size of MoS2 spanned from a few hundreds of nanometers to 1 mu m, while the size of GO was between 400 nm and a few micrometers. Thus, the coverage of the MoS2-GO composite on the ITO surface improved as the GO content increased, owing to the large particle size of GO. Notably, GO with large size could fully cover the indium tin oxide film surface, thus, lowering the roughness. The highest maximum power efficiency (PEmax) was exhibited by the OLED with MoS2-GO 6:4 composite HIL, indicating that similar contents of MoS2 and GO in MoS2-GO composites provide the best results. The OLED with GO HIL showed very high PEmax (4.94 lm W-1) because of very high surface coverage and high work function of GO. These results indicate that the MoS2-GO composites can be used to fabricate HILs in OLEDs.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Physical and Biological Characteristics of Electrospun Poly (vinyl Alcohol) and Reduced Graphene Oxide Nanofibrous Structure
    (Taylor & Francis Ltd, 2024) Sasmazel, Hilal Turkoglu; Alazzawi, Marwa; Gozutok, Melike; Sadhu, Veera
    The fabrication of graphene-based nanocomposites has been a topic of increasing interest due to graphene's exceptional physical properties and the ability to enhance the properties of various polymeric materials. Evaluating the biocompatibility of these nanocomposites is crucial to ensure their safe and effective use in biomedical applications. This study characterized and assessed the biocompatibility of previously fabricated electrospun polyvinyl alcohol (PVA)/reduced graphene oxide rGO fibrous structures by conducting a comprehensive assessment of their physical and biological characteristics. Contact angle measurements revealed that adding rGO to electrospun PVA fibers enhanced the surface wettability, improving the fibrous structure's PBS absorption capacity and degradation behavior. Including the rGO content resulted in a higher water vapor transmission rate, reaching similar to 48 g/m2day for PVA + 0.5 wt.% rGO and similar to 45 g/m2day for PVA + 1.0 wt.% rGO, compared to similar to 40 g/m2day for electrospun PVA fibers. Cell culture studies, including MTT assay, alkaline phosphatase (ALP) activity analysis, alizarin red staining, fluorescence microscopy, and SEM analyses, demonstrated that electrospun PVA + 1.0 wt.% rGO nanocomposites exhibited superior cell viability, proliferation, and growth compared to other samples, due to the improved physical properties of the PVA + 1.0 wt.% rGO fibrous structure.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 25
    Facile synthesis of CsPbBr3/PbSe composite clusters
    (Taylor & Francis Ltd, 2018) Thang Phan Nguyen; Ozturk, Abdullah; Park, Jongee; Sohn, Woonbae; Tae Hyung Lee; Jang, Ho Won; Kim, Soo Young
    In this work, CsPbBr3 and PbSe nanocomposites were synthesized to protect perovskite material from self-enlargement during reaction. UV absorption and photoluminescence (PL) spectra indicate that the addition of Se into CsPbBr3 quantum dots modified the electronic structure of CsPbBr3, increasing the band gap from 2.38 to 2.48 eV as the Cs:Se ratio increased to 1:3. Thus, the emission color of CsPbBr3 perovskite quantum dots was modified from green to blue by increasing the Se ratio in composites. According to X-ray diffraction patterns, the structure of CsPbBr3 quantum dots changed from cubic to orthorhombic due to the introduction of PbSe at the surface. Transmission electron microscopy and X-ray photoemission spectroscopy confirmed that the atomic distribution in CsPbBr3/PbSe composite clusters is uniform and the composite materials were well formed. The PL intensity of a CsPbBr3/PbSe sample with a 1:1 Cs: Se ratio maintained 50% of its initial intensity after keeping the sample for 81 h in air, while the PL intensity of CsPbBr3 reduced to 20% of its initial intensity. Therefore, it is considered that low amounts of Se could improve the stability of CsPbBr3 quantum dots.