4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 1Citation - Scopus: 1Machine Vs. Deep Learning Comparision for Developing an International Sign Language Translator(Taylor & Francis Ltd, 2022) Eryilmaz, Meltem; Balkaya, Ecem; Ucan, Eylul; Turan, Gizem; Oral, Seden GulayThis study aims to enable deaf and hard-of-hearing people to communicate with other individuals who know and do not know sign language. The mobile application was developed for video classification by using MediaPipe Library in the study. While doing this, considering the problems that deaf and hearing loss individuals face in Turkey and abroad modelling and training stages were carried out with the English language option. With the real-time translation feature added to the study individuals were provided with instant communication. In this way, communication problems experienced by hearing-impaired individuals will be greatly reduced. Machine learning and Deep learning concepts were investigated in the study. Model creation and training stages were carried out using VGG16, OpenCV, Pandas, Keras, and Os libraries. Due to the low success rate in the model created using VGG16, the MediaPipe library was used in the formation and training stages of the model. The reason for this is that, thanks to the solutions available in the MediaPipe library, it can normalise the coordinates in 3D by marking the regions to be detected in the human body. Being able to extract the coordinates independently of the background and body type in the videos in the dataset increases the success rate of the model in the formation and training stages. As a result of an experiment, the accuracy rate of the deep learning model is 85% and the application can be easily integrated with different languages. It is concluded that deep learning model is more accure than machine learning one and the communication problem faced by hearing-impaired individuals in many countries can be reduced easily.Article Citation - WoS: 9Citation - Scopus: 13Improving Word Embedding Quality With Innovative Automated Approaches To Hyperparameters(Wiley, 2021) Yildiz, Beytullah; Yıldız, Beytullah; Tezgider, Murat; Yıldız, BeytullahDeep learning practices have a great impact in many areas. Big data and significant hardware developments are the main reasons behind deep learning success. Recent advances in deep learning have led to significant improvements in text analysis and classification. Progress in the quality of word representation is an important factor among these improvements. In this study, we aimed to develop word2vec word representation, also called embedding, by automatically optimizing hyperparameters. Minimum word count, vector size, window size, negative sample, and iteration number were used to improve word embedding. We introduce two approaches for setting hyperparameters that are faster than grid search and random search. Word embeddings were created using documents of approximately 300 million words. We measured the quality of word embedding using a deep learning classification model on documents of 10 different classes. It was observed that the optimization of the values of hyperparameters alone increased classification success by 9%. In addition, we demonstrate the benefits of our approaches by comparing the semantic and syntactic relations between word embedding using default and optimized hyperparameters.Article Citation - WoS: 12Citation - Scopus: 13A two-step machine learning approach to predict S&P 500 bubbles(Taylor & Francis Ltd, 2021) Kabran, Fatma Basoglu; Unlu, Kamil DemirberkIn this paper, we are interested in predicting the bubbles in the S&P 500 stock market with a two-step machine learning approach that employs a real-time bubble detection test and support vector machine (SVM). SVM as a nonparametric binary classification technique is already a widely used method in financial time series forecasting. In the literature, a bubble is often defined as a situation where the asset price exceeds its fundamental value. As one of the early warning signals, prediction of bubbles is vital for policymakers and regulators who are responsible to take preemptive measures against the future crises. Therefore, many attempts have been made to understand the main factors in bubble formation and to predict them in their earlier phases. Our analysis consists of two steps. The first step is to identify the bubbles in the S&P 500 index using a widely recognized right-tailed unit root test. Then, SVM is employed to predict the bubbles by macroeconomic indicators. Also, we compare SVM with different supervised learning algorithms by usingk-fold cross-validation. The experimental results show that the proposed approach with high predictive power could be a favourable alternative in bubble prediction.Article Citation - WoS: 29Citation - Scopus: 43Text Classification Using Improved Bidirectional Transformer(Wiley, 2022) Tezgider, Murat; Yıldız, Beytullah; Yildiz, Beytullah; Aydin, Galip; Yıldız, BeytullahText data have an important place in our daily life. A huge amount of text data is generated everyday. As a result, automation becomes necessary to handle these large text data. Recently, we are witnessing important developments with the adaptation of new approaches in text processing. Attention mechanisms and transformers are emerging as methods with significant potential for text processing. In this study, we introduced a bidirectional transformer (BiTransformer) constructed using two transformer encoder blocks that utilize bidirectional position encoding to take into account the forward and backward position information of text data. We also created models to evaluate the contribution of attention mechanisms to the classification process. Four models, including long short term memory, attention, transformer, and BiTransformer, were used to conduct experiments on a large Turkish text dataset consisting of 30 categories. The effect of using pretrained embedding on models was also investigated. Experimental results show that the classification models using transformer and attention give promising results compared with classical deep learning models. We observed that the BiTransformer we proposed showed superior performance in text classification.

