2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 6Citation - Scopus: 6Excessive Damage Increase in Dual Phase Steels Under High Strain Rates and Temperatures(Sage Publications Ltd, 2021) Cobanoglu, Merve; Ertan, Rasim K.; Simsir, Caner; Efe, MertDamage formation in dual phase steels is a complex process and it may be sensitive to the deformation conditions and mechanisms. In this study, the damage parameter is measured and compared under quasi-static and industrial forming conditions (temperatures: 25 vs 200, 300 degrees C and strain rates: 10(-3)vs 10 s(-1)) for DP590 and DP800 steels. Resonance frequency and ultrasonic sound velocity techniques are utilized for the measurements to test the effectiveness and validity of each technique. At a given strain, the damage values can be up to 700% higher at industrial forming conditions, under which dynamic strain aging (DSA) controls the deformation behavior. DSA results in lower formability and is the likely mechanism responsible from the abnormal damage evolution. Measured damage parameters are also confirmed with the void fraction characterization by microscopy, which also provided details on the void shape and distribution with respect to the deformation conditions.Conference Object Citation - WoS: 125Citation - Scopus: 158Incremental bulk metal forming(Elsevier, 2007) Groche, P.; Fritsche, D.; Tekkaya, E. A.; Allwood, J. M.; Hirt, G.; Neugebauer, R.Incremental bulk forming is the oldest known technique in metal working. Many developments in this field have dramatically changed our society. Today incremental bulk forming processes are applied to quality products in small and large series production. Numerous advances have been realized. The motivation for using these processes is presented here. After a general definition of incremental processes and a classification of incremental bulk forming in particular, some innovative product and process examples are given that show the potential. Finally recent progress and challenges are illustrated in detail. This includes the development of new machinery for incremental bulk forming, advanced methods for process planning, occurrence of failure modes and the properties of finished products.

