Excessive damage increase in dual phase steels under high strain rates and temperatures

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Sage Publications Ltd

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

Damage formation in dual phase steels is a complex process and it may be sensitive to the deformation conditions and mechanisms. In this study, the damage parameter is measured and compared under quasi-static and industrial forming conditions (temperatures: 25 vs 200, 300 degrees C and strain rates: 10(-3)vs 10 s(-1)) for DP590 and DP800 steels. Resonance frequency and ultrasonic sound velocity techniques are utilized for the measurements to test the effectiveness and validity of each technique. At a given strain, the damage values can be up to 700% higher at industrial forming conditions, under which dynamic strain aging (DSA) controls the deformation behavior. DSA results in lower formability and is the likely mechanism responsible from the abnormal damage evolution. Measured damage parameters are also confirmed with the void fraction characterization by microscopy, which also provided details on the void shape and distribution with respect to the deformation conditions.

Description

Simsir, Caner/0009-0006-7871-4232; Efe, Mert/0000-0001-9526-7303

Keywords

Damage, dual phase, void, forming, dynamic strain aging, sheet

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Q1

Scopus Q

Q1

Source

Volume

30

Issue

2

Start Page

283

End Page

296

Collections