Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 15
    Citation - Scopus: 18
    Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
    (Natl Acad Sci Ukraine, inst Math, 2009) Guseinov, Gusein Sh.
    In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing numbers of the matrix. The inverse problems from generalized spectral function as well as from spectral data are investigated. In this way, a procedure for construction of complex tridiagonal matrices having real eigenvalues is obtained.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    An Inverse Problem for Two Spectra of Complex Finite Jacobi Matrices
    (Tech Science Press, 2012) Guseinov, Gusein Sh.; Mathematics
    This paper deals with the inverse spectral problem for two spectra of finite order complex Jacobi matrices (tri-diagonal symmetric matrices with complex entries). The problem is to reconstruct the matrix using two sets of eigenvalues, one for the original Jacobi matrix and one for the matrix obtained by replacing the first diagonal element of the Jacobi matrix by some another number. The uniqueness and existence results for solution of the inverse problem are established and an explicit algorithm of reconstruction of the matrix from the two spectra is given.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Oscillation Criteria for Non-Canonical Second-Order Nonlinear Delay Difference Equations With a Superlinear Neutral Term
    (Texas State Univ, 2023) Vidhyaa, Kumar S.; Thandapani, Ethiraju; Alzabut, Jehad; Ozbekler, Abdullah
    We obtain oscillation conditions for non-canonical second-order nonlinear delay difference equations with a superlinear neutral term. To cope with non-canonical types of equations, we propose new oscillation criteria for the main equation when the neutral coefficient does not satisfy any of the conditions that call it to either converge to 0 or & INFIN;. Our approach differs from others in that we first turn into the non-canonical equation to a canonical form and as a result, we only require one condition to weed out non-oscillatory solutions in order to induce oscillation. The conclusions made here are new and have been condensed significantly from those found in the literature. For the sake of confirmation, we provide examples that cannot be included in earlier works.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Inverse Spectral Problem for Finite Jacobi Matrices With Zero Diagonal
    (Taylor & Francis Ltd, 2015) Aydin, Ayhan; Guseinov, Gusein Sh.
    In this study, the necessary and sufficient conditions for solvability of an inverse spectral problem about eigenvalues and normalizing numbers for finite-order real Jacobi matrices with zero diagonal elements are established. Anexplicit procedure of reconstruction of the matrix from the spectral data consisting of the eigenvalues and normalizing numbers is given. Numerical examples and error analysis are provided to demonstrate the solution technique of the inverse problem. The results obtained are used to justify the solving procedure of the finite Langmuir lattice by the method of inverse spectral problem.