Inverse Spectral Problem for Finite Jacobi Matrices With Zero Diagonal
No Thumbnail Available
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis Ltd
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this study, the necessary and sufficient conditions for solvability of an inverse spectral problem about eigenvalues and normalizing numbers for finite-order real Jacobi matrices with zero diagonal elements are established. Anexplicit procedure of reconstruction of the matrix from the spectral data consisting of the eigenvalues and normalizing numbers is given. Numerical examples and error analysis are provided to demonstrate the solution technique of the inverse problem. The results obtained are used to justify the solving procedure of the finite Langmuir lattice by the method of inverse spectral problem.
Description
Keywords
zero-diagonal Jacobi matrix, difference equation, spectral data, inverse spectral problem, Langmuir lattice
Turkish CoHE Thesis Center URL
Fields of Science
0101 mathematics, 01 natural sciences
Citation
WoS Q
Q4
Scopus Q

OpenCitations Citation Count
2
Source
Inverse Problems in Science and Engineering
Volume
23
Issue
8
Start Page
1267
End Page
1282
PlumX Metrics
Citations
CrossRef : 2
Scopus : 3
Captures
Mendeley Readers : 1
SCOPUS™ Citations
3
checked on Feb 01, 2026
Web of Science™ Citations
3
checked on Feb 01, 2026
Page Views
5
checked on Feb 01, 2026
Google Scholar™

OpenAlex FWCI
0.2338674
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

5
GENDER EQUALITY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

14
LIFE BELOW WATER

16
PEACE, JUSTICE AND STRONG INSTITUTIONS


