5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 139Citation - Scopus: 140CaXH3 (X = Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications(Wiley, 2020) Surucu, Gokhan; Gencer, Aysenur; Candan, Abdullah; Gullu, Hasan H.; Isik, MehmetHydrogen storage is one of the attractive research interests in recent years due to the advantages of hydrogen to be used as energy source. The studies on hydrogen storage applications focus mainly on investigation of hydrogen storage capabilities of newly introduced compounds. The present paper aims at characterization of CaXH3 (X: Mn, Fe, or Co) perovskite-type hydrides for the first time to understand their potential contribution to the hydrogen storage applications. CaXH3 compounds have been investigated by density functional theory studies to reveal their various characteristics and hydrogen storage properties. CaXH3 compounds have been optimized in cubic crystal structure and the lattice constants of studied compounds have been obtained as 3.60, 3.50, and 3.48 angstrom for X: Mn, Fe, and Co compounds, respectively. The optimized structures have negative formation enthalpies pointing out that studied compounds are thermodynamically stable and could be synthesized experimentally. The gravimetric hydrogen storage densities of X: Mn, Fe, and Co compounds were found in as 3.09, 3.06, and 2.97 wt%, respectively. The revealed values for hydrogen storage densities indicate that CaXH3 compounds may be potential candidates for hydrogen storage applications. Moreover, various mechanical parameters of interest compounds like elastic constants, bulk modulus, and Poisson's ratio have been reported throughout the study. These compounds were found mechanically stable with satisfying Born stability criteria. Further analyses based on Cauchy pressure and Pugh criterion, showed that they have brittleness nature and relatively hard materials. In addition, the electronic characteristics, band structures, and associated partial density of states of CaXH3 hydrides have been revealed. The dynamic stability behavior of them was verified based on the phonon dispersion curves.Article Citation - WoS: 2Citation - Scopus: 2Investigation of Tungsten-Based Seleno-Chevrel Compounds With Different Compositions for Efficient Water Splitting(Wiley-v C H verlag Gmbh, 2023) Dag, Tugce Sevinc; Surucu, Gokhan; Gencer, Aysenur; Surucu, Ozge; Ozel, Faruk; Ciftci, YaseminThis study investigates the photocatalytic water splitting performance for NixW6Se8(x=1,2,3,4)${\mathrm{N}}{{\mathrm{i}}_{\mathrm{x}}}{{\mathrm{W}}_6}{\mathrm{S}}{{\mathrm{e}}_8}\;( {x = 1, 2, 3, 4} )$ Chevrel phases with the chemical formula M(x)Mo(6)Ch(8), where M is a metal and Ch is a chalcogen, with x being 0, 1, 2, 3, or 4. Density Functional Theory (DFT) is used to study the NixW6Se8(x=1,2,3,4)${\mathrm{N}}{{\mathrm{i}}_{\mathrm{x}}}{{\mathrm{W}}_6}{\mathrm{S}}{{\mathrm{e}}_8}{\mathrm{\;}}( {x = 1, 2, 3, 4} )$ Chevrel phases, which includes earth-abundant elements for this specific study as an essential consideration for photocatalytic water splitting. The electronic properties are calculated for the NiW6Se8 and Ni2W6Se8 compounds with thermodynamical, mechanical, and dynamic stabilities. For photocatalytic water splitting, the band gaps below 1.23 eV are excluded, and the conduction and valence band levels are determined to examine the reduction and oxidation potentials for efficient photocatalytic water-splitting materials. An examination of the selected band gaps, along with the conduction and valence band levels, reveals that NiW6Se8 is suitable for both reduction and oxidation reactions; whereas, Ni2W6Se8 is a convenient material only for the reduction reaction. This is the first attempt, as far as the literature reveals, to study Chevrel phases in detail and to identify a suitable compound for photocatalytic water splitting.Article Citation - Scopus: 5Evaluation of Mechanical Properties of Bi12sio20 Sillenite Using First Principles and Nanoindentation(Taylor and Francis Ltd., 2021) Isik,M.; Surucu,G.; Gencer,A.; Gasanly,N.M.The mechanical and anisotropic elastic properties of Bi12SiO20 (BSO) were investigated using density functional theory (DFT) calculations and nanoindentation. The calculated and experimentally observed XRD patterns of the compound were reported and the crystal structure of the BSO was determined to be cubic with the lattice constant of a = 1.025 nm. The second-order elastic constants and related polycrystalline elastic moduli (e.g. shear modulus, Young’s modulus, Poisson’s ratio, linear compressibility and hardness) were calculated. The calculated elastic constants indicated that BSO is mechanically stable and exhibits anisotropic characteristics. Moreover, the directional dependencies of sound wave velocities were investigated in three dimensions. Pressure-dependent bulk modulus was plotted at temperatures between 0 and 800 K. Hardness and Young’s modulus were also determined by performing nanoindentation experiments on (222) and (631) planes of the BSO single crystal. The analyses of the experimental nanoindentation data resulted in hardness and Young’s modulus values of 7.2 and 97.0 GPa, respectively. The results of DFT and nanoindentation were discussed throughout the paper. The results of the present paper would provide valuable information on the mechanical behaviours of the BSO for the optoelectronic device applications. © 2021 Informa UK Limited, trading as Taylor & Francis Group.Article Citation - WoS: 3Citation - Scopus: 2Establishing the nimo6se8< Chevrel Phase as a Promising Material Using Dft(Wiley-v C H verlag Gmbh, 2024) Surucu, Gokhan; Surucu, Ozge; Usanmaz, Demet; Oezel, Faruk; Gencer, AysenurIn this study, the NiMo6Se8 Chevrel phase is analyzed using Density Functional Theory (DFT) and the Vienna Ab-initio Simulation Package (VASP). The analysis focuses on the phase's structural, electrical, and mechanical characteristics to fill gaps in the current literature. The presence of a rhombohedral crystal structure confirms its thermodynamic stability, as indicated by a negative formation enthalpy, which suggests that it can be synthesized under favorable conditions. The electronic properties of the phase are analyzed, indicating that it exhibits semiconductor characteristics with a bandgap of 1.07 eV. This makes it appropriate for various technological applications. The estimated elastic constants provide an indication of mechanical strength and flexibility, with a noticeable presence of anisotropic elasticity. The confirmation of dynamical stability is achieved by analyzing the phonon dispersion curve, which reveals the absence of any negative frequencies. Furthermore, the material has a low thermal conductivity, increasing its suitability for thermoelectric applications. The analysis emphasizes the versatile capabilities of the NiMo6Se8 Chevrel phase, especially in thermoelectric and energy storage applications, showcasing its promising potential for future technological implementation.Article Citation - WoS: 2Integrating Theoretical and Experimental Approaches To Unveil the Mechanical Properties of Cusbse2 Thin Films(Iop Publishing Ltd, 2024) Surucu, Ozge; Gencer, Aysenur; Usanmaz, Demet; Parlak, Mehmet; Surucu, GokhanAn exhaustive investigation of the mechanical characteristics of CuSbSe2 thin films is conducted in this study by combining experimental nanoindentation methods with theoretical simulations. The Ab-initio Molecular Dynamics (AIMD) calculations are performed with the machine learning (ML) force fields. By employing the Vienna Ab-initio Simulation Package (VASP) based on Density Functional Theory (DFT), theoretical inquiries are carried out to identify crucial parameters, such as bonding characteristics, elastic constants, hardness, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio. Experimental validation is conducted using nanoindentation to investigate load-dependent hardness and Young's modulus in a manner that closely matches the theorized predictions. The anomalies between experimental and theoretical outcomes are ascribed to anisotropic behavior and grain boundaries. Furthermore, an investigation is conducted into the directional dependence of sound wave velocities in the CuSbSe2 films, leading to the revelation of intricate elastic property details. By employing an integrated theoretical-experimental approach, the present attempt not only increases the knowledge concerning CuSbSe2 films but also fortifies the relationship between theory and experiment, thereby bolstering the dependability of our results. The insights provided as a result of this paper facilitate the development of CuSbSe2 film applications in a variety of technological fields in the future.

