2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 17Citation - Scopus: 17Trap Distribution in Tlins2 Layered Crystals From Thermally Stimulated Current Measurements(Korean Physical Soc, 2008) Isik, M.; Goksen, K.; Gasanly, N. M.; Ozkan, H.We have carried out thermally stimulated current (TSC) measurements with the current flowing along the layer on as-grown TlInS2 layered single crystals in the low temperature range 10 - 110 K with different heating rates of 0.1 - 1.5 K/s. Experimental evidence was found for the presence of two shallow electron trapping centers with activation energies of 12 and 14 meV. Their capture cross sections have been determined as 2.2 x 10(-23) and 7.1 x 10(-25) cm(2), respectively. It was concluded that retrapping in these centers is negligible, which was confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumed slow retrapping. An exponential distribution of electron traps was revealed from the analysis of the TSC data obtained at different light excitation temperatures. This experimental technique provided a value of 27 meV/decade for the trap distribution. The parameters of the monoclinic unit cell were determined by studying the X-ray powder diffraction.Article Citation - WoS: 2Citation - Scopus: 2Thermoluminescence Characteristics of Tl4gain3< Layered Single Crystals(Taylor & Francis Ltd, 2014) Delice, S.; Isik, M.; Gasanly, N. M.The properties of trapping centres in - as grown - Tl4GaIn3S8 layered single crystals were investigated in the temperature range of 10-300K using thermoluminescence (TL) measurements. TL curve was analysed to characterize the defects responsible for the observed peaks. Thermal activation energies of the trapping centres were determined using various methods: curve fitting, initial rise and peak shape methods. The results indicated that the peak observed in the low-temperature region composed of many overlapped peaks corresponding to distributed trapping centres in the crystal structure. The apparent thermal energies of the distributed traps were observed to be shifted from similar to 12 to similar to 125meV by increasing the illumination temperature from 10 to 36K. The analysis revealed that the first-order kinetics (slow retrapping) obeys for deeper level located at 292meV.

