2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 44Citation - Scopus: 52Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for Pem Fuel Cell(Springer, 2016) Devrim, Yilser; Albostan, AyhanThe aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70 degrees C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H-2/O-2 reactant gases as 0.925 W cm(2). The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm(2) at 0.6 V with H-2/O-2 and H-2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm(2) constant current density and 70 degrees C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.Article Mathematical Modeling of a Direct Dimethyl Ether Fuel Cell(Wiley-hindawi, 2022) Alpaydin, Guvenc Umur; Durmus, Gizem Nur Bulanik; Colpan, C. Ozgur; Devrim, YilserIn this study, a mathematical model of a direct dimethyl ether fuel cell (DDMEFC) is developed to examine the effect of operating conditions on voltage losses and cell performance. In modeling, the electrochemical relations and mass balances are used to find the cell voltage for the given conditions. The values of some modeling parameters are determined using experimental data through curve fitting. For validation purposes, in-house experimental studies are conducted. For this purpose, Pt50Ru25Pd25/C, Pt40Ru40Pd20/C, and Pt50Pd50/C anode catalysts are synthesized by the microwave method. The effects of these synthesized catalysts and the operating conditions (cell temperature, the molar ratio of dimethyl ether, and water) on the DDMEFC performance are discussed by comparing the activation and ohmic polarization as well as the polarization curves using the model developed. This cell-level modeling approach could be considered as a preliminary step in the design process of a DDMEFC stack.

