Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Assessment of Tensile Properties of Cast High Mg Containing Al-Mg Aluminum Alloy With Correlation of Computed Tomography Scans and Optical Crack Surface Analysis
    (Springer int Publ Ag, 2023) Gul, K. Armagan; Dispinar, Derya; Kayali, E. Sabri; Aslan, Ozgur
    In the casting of aluminum alloys, melt cleanliness has been crucial to achieve desirable final properties. Alloying elements, casting method and degassing procedures have been applied to obtain an internal structure free from defects. Most common defects have been double oxide metal films called bifilms. These defects have been detrimental to mechanical properties. Efforts in industry and academia have focused on removing those defects. Reduced pressure test (RPT) and optical evaluation of cross section of specimens have been the most preferred method of bifilm index evaluation method to assess melt quality. As this method is 2D cross-section analysis, there has not been a direct method to correlate mechanical properties with 3D volume analysis of both RPT and tensile specimens. Computed tomography scanning/imaging has been a promising and emerging method for 3D internal structure evaluation to evaluate internal defects. Subsequent mechanical properties fluctuation in correlation with defect quantity and size may be built in this methodology. In the present study, casting of aluminum alloys with high magnesium content and different alloying elements has been done. Effect of melt quality and defect quantities on internal structures have been investigated via RPT tests and computed tomography scans (CTS). Correlation of CTS and tensile tests has been shown. Tensile test specimen surfaces have been investigated via optical imaging, and bifilm effects have been shown. Alloy quality correlations with tensile tests have been established.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Using Servo-Drive Presses to Determine the Effect of Blank Holder Pressure on Temperature Change in Warm Forming of Sheet
    (Asme-amer Soc Mechanical Eng, 2011) Kaya, Serhat
    Heat transfer coefficient (HTC) is one of the most important and difficult-to-obtain parameter in high temperature environment. Contact pressure and workpiece surface roughness are among important parameters that affect the heat transfer in elevated temperature forming of sheets. In this study, HTCs are investigated experimentally by using a servo-drive press. With the flexibility that the servo-drive press offers, effect of various blank holder pressures on temperature change is determined. Before and after surface roughness conditions of aluminum and magnesium (from two different manufacturers) alloy sheets are compared. Experimental setup was modeled using deform 2D, and measured temperature curves were compared with the finite element analysis (FEA) predictions and a window of heat transfer coefficients were determined for warm forming of sheets. Determined heat transfer coefficients were implemented in a nonisothermal deep drawing FE model in deform 2D and results were compared with experiments. Good agreement was obtained between FEA predictions and experiments.