Using Servo-Drive Presses to Determine the Effect of Blank Holder Pressure on Temperature Change in Warm Forming of Sheet

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Asme-amer Soc Mechanical Eng

Research Projects

Organizational Units

Organizational Unit
Automotive Engineering
(2009)
Having started education in 2009, the Atılım university Department of Automotive Engineering offers an academic environment at international standards, with its education in English, a contemporary curriculum and ever-better and ever-developing laboratory opportunities. In addition to undergraduate degree education, the graduate program of multi-disciplinary mechanical engineering offers the opportunity for graduate and doctorate degree education automotive engineering. The Atılım University Automotive Engineering has been selected to be the best in Turkey in 2020 in the field of automotive engineering with studies in energy efficiency, motor performance, active/ passive automotive security and vehicle dynamics conducted in the already-existing laboratories of its own. Our graduates are employed at large-scale companies that operate in Turkey, such as Isuzu, Ford Otosan, Hattat, Honda, Hyundai, Karsan, Man, Mercedes-Benz, Otokar, Renault, Temsa, Tofaş, Toyota, Türk Traktör, Volkswagen (to start operation in 2020). In addition, our graduates have been hired at institutions such as Tübitak, Tai, Aselsan, FNSS, Ministry of National Defence, Tcdd etc. or at supplier industries in Turkey. Due to the recent evolution undergone by the automotive industry with the development of electric, hybrid and autonomous vehicle technologies, automotive engineering has gained popularity, and is becoming ever more exhilarating. In addition to combustion engine technologies, our students also gain expertise in these fields. The “Formula Student Car” contest organized since 2011 by the Society of Automotive Engineers (SAE) where our Department ranked third globally in 2016 is one of the top projects conducted by our department where we value hands-on training. Our curriculum, updated in 2020, focuses on computer calculation and simulation courses, as well as laboratory practice, catered to modern automotive technologies.

Journal Issue

Abstract

Heat transfer coefficient (HTC) is one of the most important and difficult-to-obtain parameter in high temperature environment. Contact pressure and workpiece surface roughness are among important parameters that affect the heat transfer in elevated temperature forming of sheets. In this study, HTCs are investigated experimentally by using a servo-drive press. With the flexibility that the servo-drive press offers, effect of various blank holder pressures on temperature change is determined. Before and after surface roughness conditions of aluminum and magnesium (from two different manufacturers) alloy sheets are compared. Experimental setup was modeled using deform 2D, and measured temperature curves were compared with the finite element analysis (FEA) predictions and a window of heat transfer coefficients were determined for warm forming of sheets. Determined heat transfer coefficients were implemented in a nonisothermal deep drawing FE model in deform 2D and results were compared with experiments. Good agreement was obtained between FEA predictions and experiments.

Description

Keywords

warm forming, servo-drive presses, heat transfer coefficient, surface roughness, aluminum, magnesium, finite element analysis

Turkish CoHE Thesis Center URL

Citation

3

WoS Q

Q2

Scopus Q

Q1

Source

Volume

133

Issue

6

Start Page

End Page

Collections