5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 4Citation - Scopus: 4Characterization of the Ge/Bi2< Interfaces(Univ Fed Sao Carlos, dept Engenharia Materials, 2019) Alharbi, Seham Reef; Qasrawi, Atef FayezIn this article, the properties of the Ge/Bi2O3 interfaces as microwave cavities are reported and discussed. The interface is composed of monoclinic Bi2O3 films grown onto polycrystalline cubic Ge substrate. It is observed that consistent with the theoretical design of the energy band diagram, the experimental current-voltage characteristics of the Yb/Ge/Bi2O3/C hybrid device structure exhibits electronic switching property. In addition, the capacitance, resistance and microwave cutoff frequency spectral analysis in the frequency domain of 0.01-1.50 GHz revealed a frequency dependent tunability of the device. Moreover, while the Yb/Bi2O3/C interface displays negative capacitance effect, the Yb/Ge/Bi2O3/C interfaces are also found to have the ability of altering the resistance up to three orders of magnitude. Such property allowed reaching a cut off frequency up to 116 GHz. The electronic features of the device indicated that the Ge/Bi2O3 interfaces are attractive for production of negative capacitance field effect transistors and band pass/reject filters.Article Citation - WoS: 1Citation - Scopus: 1Structural, Optical and Dielectric Performance of Molybdenum Trioxide Thin Films Sandwiched With Indium Sheets(inst Materials Physics, 2020) Abusaa, M.; Qasrawi, A. F.; Kmail, H. K.; Khanfar, H. K.; Department of Electrical & Electronics EngineeringIn this work, we report the enhancements in the structural, optical and dielectric properties of molybdenum trioxide that are achieved by insertion of 50 and 100 nm thick indium sheets between layers of MoO3. The films which are coated onto ultrasonically glass substrates under a vacuum pressure of 10 -5 mbar exhibited metal induced crystallization process upon insertion of indium sheets. Optically, indium sheets tuned the transmittance and reflectance, significantly, increased the absorption coefficient values and formed interbands in the band gap of MoO3. The energy band gap decreased with increasing indium sheets thickness. On the other hand, the insertion of indium layers into the structure of MoO3 is observed to improve the dielectric response of these films to values that nominate them for used in thin film transistor technology. In the same context, the analyses of the optical conductivity which are carried out with the help of Drude-Lorentz approach have shown that the presence of indium sheets can increase the optical conductivity and enhance the plasmon frequency and free charge carrier density of MoO3. The plasmon frequency is tuned in the range of 1.68-7.16 GHz making MoO3 films attractive for plasmonic applications.Article Citation - WoS: 2Role of Au Nanosheets in Enhancing the Performance of Yb/Zns Tunneling Photosensors(Natl inst R&d Materials Physics, 2020) Abusaa, M.; Qasrawi, A. F.; Assad, B. M.; Khanfar, H. K.In this study, the effects of Au nanosheets of thicknesses of 50 nm on the structural, electrical and photoelectrical properties of Yb/ZnS/CdS/Au (ZAC-0) devices is considered. Stacked layers of ZnS and CdS which are prepared by the thermal evaporation technique onto Yb substrates under vacuum pressure of 10(-5) mbar exhibits rectifying characteristics. For these diodes a reverse to forward current ratios of similar to 10(5) at biasing voltage of 0.60 V is determined. Insertion of Au nanosheets between the stacked layers of ZnS and CdS increased the current values by three orders of magnitude and changed the current conduction mechanism from thermionic emission to tunneling under reverse biasing conditions. The ZAC-0 device, exhibit a barrier height lowering and barrier widening upon insertion of Au nanosheets. After the participation of Au nanosheets in the structure of the ZAC-0 devices, large photosensitivity and responsivity accompanied with high external quantum efficiency is observed. The responsivity to 406 nm laser radiation is biasing voltage dependent and reaches 135 mA/W at 0.60 V. The features of the Yb/ZnS/Au/CdS/Au photosensors nominate them as promising candidates for use in light communication technology as signal receivers.Article Citation - Scopus: 2Role of au nanosheets in enhancing the performance of yb/zns/cds/au tunneling photosensors(S.C. Virtual Company of Phisics S.R.L, 2020) Abusaa,M.; Qasrawi,A.F.; Asaad,B.M.; Khanfar,H.K.In this study, the effects of Au nanosheets of thicknesses of 50 nm on the structural, electrical and photoelectrical properties of Yb/ZnS/CdS/Au (ZAC-0) devices is considered. Stacked layers of ZnS and CdS which are prepared by the thermal evaporation technique onto Yb substrates under vacuum pressure of 10-5 mbar exhibits rectifying characteristics. For these diodes a reverse to forward current ratios of ~105 at biasing voltage of 0.60 V is determined. Insertion of Au nanosheets between the stacked layers of ZnS and CdS increased the current values by three orders of magnitude and changed the current conduction mechanism from thermionic emission to tunneling under reverse biasing conditions. The ZAC-0 device, exhibit a barrier height lowering and barrier widening upon insertion of Au nanosheets. After the participation of Au nanosheets in the structure of the ZAC-0 devices, large photosensitivity and responsivity accompanied with high external quantum efficiency is observed. The responsivity to 406 nm laser radiation is biasing voltage dependent and reaches 135 mA/W at 0.60 V. The features of the Yb/ZnS/Au/CdS/Au photosensors nominate them as promising candidates for use in light communication technology as signal receivers. © 2020, S.C. Virtual Company of Phisics S.R.L. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 3Enhancement of the Performance of the Cu2se Band Filters Via Yb Nanosandwiching(Wiley, 2019) Khusayfan, Najla M.; Qasrawı, Atef Fayez Hasan; Qasrawi, A. F.; Khanfar, Hazem K.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringIn this article, we report the experimental and theoretical modeling on the band pass filters that are made of two thin film layers of Cu2Se coated onto aluminum substrates and nanosandwiched with 50 nm ytterbium layers. The nanosandwiching of Yb between two layers of Cu2Se is found to decrease the lattice constant, the defect density, and the strain and increase the grain size in the Cu2Se. Electrically, it is observed that, Al/Cu2Se/Al structure exhibits wave trap characteristics with notch frequency of 1.31 GHz. The Yb-layers improved the performance of the band pass filters by increasing the amplitude of the reflection coefficients, increasing the return loss values and decreasing the voltage standing wave ratios. The calculated conduction and wave trapping parameters nominate the Yb-nanosandwiched Cu2Se films for use in communication technology as they exhibit negative capacitance effect and narrow band pass range.

