Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Performance Analysis of a Gas-To System Based on Protonic-Ceramic Electrochemical Compressor
    (Pergamon-elsevier Science Ltd, 2023) Baniasadi, Ehsan; Ghojavand, Fateme; Colpan, Can Ozgur; Devrim, Yilser
    In this study, two scenarios are considered to evaluate the performance of a protonic ceramic electrochemical hydrogen compressor (EHC) and reformer integrated with a pro-ton exchange membrane fuel cell (PEMFC). First scenario includes integration of an EHC with PEMFC and in the second scenario, steam methane reforming (SMR) is replaced by an EHC. Results show that the highest energy and exergy efficiencies of the system in the first scenario is achieved when the area-specific resistance (ASR) in EHC is 1.5 Ucm2. An in-crease in the working temperature of EHC causes a considerable rise in the exergy destruction and an increase of energy efficiency by 7% in the first scenario, while the temperature of the reformer affects the exergy destruction, negligibly. The parametric study indicates that the best value of the current density of PEMFC is 0.8481 A/cm2 and 0.8324 A/cm2 and the best current density of PEM-EHC value is 0.4468 A/cm2 and 0.11 A/cm2 in the 1st and 2nd scenarios, respectively. Under the same conditions, energy and exergy efficiencies for the first scenario are 61.63% and 54.9% and for the second scenario are 42.48% and 14.61%, respectively.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 44
    Citation - Scopus: 52
    Hydrogen energy systems for underwater applications
    (Pergamon-elsevier Science Ltd, 2022) Sezgin, Berna; Devrim, Yilser; Ozturk, Tayfur; Eroglu, Inci
    The most critical development in conventional underwater applications in recent years is to use hydrogen energy systems, including Air Independent Propulsion (AIP) systems. Proton Exchange Membrane (PEM) fuel cell-powered AIP systems increase interest worldwide. They offer many advantages such as longer endurance time without going to the surface for 2-3 weeks or without snorkeling with an average speed, perfectly silent operation, environmentally friendly process, high efficiency, and low thermal dissipation underwater. PEM fuel cells require a continuous source of hydrogen and oxygen as reactants to sustain a chemical reaction to produce electrical energy. Hydrogen storage is the critical challenge regarding the quality of supplied hydrogen, system weight, and volume. This paper reviewed hydrogen/oxygen storage preferences coupled with PEM Fuel Cell applications in the literature for unmanned underwater vehicles. Since underwater vehicles have different volume and weight requirements, no single hydrogen storage technique is the best for all underwater applications.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.