Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - Scopus: 3
    Complete Characterization of a Class of Permutation Trinomials in Characteristic Five
    (Springer, 2024) Grassl,M.; Özbudak,F.; Özkaya,B.; Temür,B.G.
    In this paper, we address an open problem posed by Bai and Xia in [2]. We study polynomials of the form f(x)=x4q+1+λ1x5q+λ2xq+4 over the finite field F5k, which are not quasi-multiplicative equivalent to any of the known permutation polynomials in the literature. We find necessary and sufficient conditions on λ1,λ2∈F5k so that f(x) is a permutation monomial, binomial, or trinomial of F52k. © The Author(s) 2024.
  • Article
    On a Class of Permutation Trinomials Over Finite Fields
    (Tubitak Scientific & Technological Research Council Turkey, 2024) Temür, Burcu Gülmez; Özkaya, Buket
    In this paper, we study the permutation properties of the class of trinomials of the form f (x) = x4q+1 + λ1xq+4 + λ2x2q+3 ∈ Fq2 [x] , where λ1, λ2 ∈ Fq and they are not simultaneously zero. We find all necessary and sufficient conditions on λ1 and λ2 such that f (x) permutes Fq2 , where q is odd and q = 22k+1, k ∈
  • Article
    Citation - WoS: 13
    Citation - Scopus: 12
    Classification of Permutation Polynomials of the Form x3< of Fq2< Where g(x< = x3< + bx Plus c and b, c ∈ Fq<
    (Springer, 2022) Ozbudak, Ferruh; Temur, Burcu Gulmez
    We classify all permutation polynomials of the form x(3) g(x(q-1)) of F-q2 where g(x) = x(3) + bx + c and b, c is an element of F-q*. Moreover we find new examples of permutation polynomials and we correct some contradictory statements in the recent literature. We assume that gcd(3, q -1) = 1 and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang, Wang, and Zieve.