3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 1Citation - Scopus: 2Computing Minimal Signature of Coherent Systems Through Matrix-Geometric Distributions(Cambridge Univ Press, 2021) Eryilmaz, Serkan; Eryılmaz, Serkan; Tank, Fatih; Eryılmaz, Serkan; Industrial Engineering; Industrial EngineeringSignatures are useful in analyzing and evaluating coherent systems. However, their computation is a challenging problem, especially for complex coherent structures. In most cases the reliability of a binary coherent system can be linked to a tail probability associated with a properly defined waiting time random variable in a sequence of binary trials. In this paper we present a method for computing the minimal signature of a binary coherent system. Our method is based on matrix-geometric distributions. First, a proper matrix-geometric random variable corresponding to the system structure is found. Second, its probability generating function is obtained. Finally, the companion representation for the distribution of matrix-geometric distribution is used to obtain a matrix-based expression for the minimal signature of the coherent system. The results are also extended to a system with two types of components.Article Citation - WoS: 2Citation - Scopus: 1Computing Waiting Time Probabilities Related To (k1< k2< ..., kl< Pattern(Springer, 2023) Chadjiconstantinidis, Stathis; Eryilmaz, SerkanFor a sequence of multi-state trials with l possible outcomes denoted by {1, 2, ..., l}, let E be the event that at least k(1) consecutive is followed by at least k(2) consecutive 2s,..., followed by at least k(l) consecutive ls. Denote by T-r the number of trials for the rth occurrence of the event E in a sequence of multi-state trials. This paper studies the distribution of the waiting time random variable T-r when the sequence consists of independent and identically distributed multi-state trials. In particular, distributional properties of T-r are examined via matrix-geometric distributions.Article Citation - WoS: 6Citation - Scopus: 6Reliability Assessment for Censored Δ-Shock Models(Springer, 2022) Chadjiconstantinidis, Stathis; Eryilmaz, SerkanThis paper is devoted to study censored delta-shock models for both cases when the intershock times have discrete and continuous distributions. In particular, the distribution and moments of the system's lifetime are studied via probability generating functions and Laplace transforms. For discrete intershock time distributions, several recursions for evaluating the probability mass function, the survival function and the moments of the system's lifetime are given. As it is shown for the discrete case, the distribution of the system's lifetime is directly linked with matrix-geometric distributions for particular classes of intershock time distributions, such as phase-type distributions. Thus, matrix-based expressions are readily obtained for the exact distribution of the system's lifetime under discrete setup. Also, discrete uniform intershock time distributions are examined. For the case of continuous intershock time distributions, it is shown that the shifted lifetime has a compound geometric distribution, and based on this, the distribution of the system's lifetime is approximated via discrete mixture distributions having a mass at delta and matrix-exponential distributions for the continuous part. Both for the discrete and the continuous case, Lundberg-type bounds and asymptotics for the survival function of system's lifetime are given. To illustrate the results, some numerical examples, both for the discrete and the continuous case, are also given.

