Reliability Assessment for Censored δ-Shock Models

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

This paper is devoted to study censored delta-shock models for both cases when the intershock times have discrete and continuous distributions. In particular, the distribution and moments of the system's lifetime are studied via probability generating functions and Laplace transforms. For discrete intershock time distributions, several recursions for evaluating the probability mass function, the survival function and the moments of the system's lifetime are given. As it is shown for the discrete case, the distribution of the system's lifetime is directly linked with matrix-geometric distributions for particular classes of intershock time distributions, such as phase-type distributions. Thus, matrix-based expressions are readily obtained for the exact distribution of the system's lifetime under discrete setup. Also, discrete uniform intershock time distributions are examined. For the case of continuous intershock time distributions, it is shown that the shifted lifetime has a compound geometric distribution, and based on this, the distribution of the system's lifetime is approximated via discrete mixture distributions having a mass at delta and matrix-exponential distributions for the continuous part. Both for the discrete and the continuous case, Lundberg-type bounds and asymptotics for the survival function of system's lifetime are given. To illustrate the results, some numerical examples, both for the discrete and the continuous case, are also given.

Description

Keywords

Matrix-geometric distribution, Matrix-exponential distribution, Phase-type distribution, Compound geometric distribution, Reliability, Shock model

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Q4

Scopus Q

Q3

Source

Volume

24

Issue

4

Start Page

3141

End Page

3173

Collections