Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Picone Type Formula for Half-Linear Impulsive Differential Equations With Discontinuous Solutions
    (Wiley-blackwell, 2015) Ozbekler, A.
    Picone type formula for half-linear impulsive differential equations with discontinuous solutions having fixed moments of impulse actions is derived. Employing the formula, Leighton and Sturm-Picone type comparison theorems as well as several oscillation criteria for impulsive differential equations are obtained. Copyright (c) 2014 John Wiley & Sons, Ltd.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Sturmian Comparison Theory for Half-Linear and Nonlinear Differential Equations Via Picone Identity
    (Wiley, 2017) Ozbekler, Abdullah
    In this paper, Sturmian comparison theory is developed for the pair of second-order differential equations; first of which is the nonlinear differential equations of the form (m(t) Phi(beta)(y'))' + Sigma(n)(i=1) q(i)(t) Phi(alpha i)(y) = 0 and the second is the half-linear differential equations (k(t)Phi(beta)(x'))' + p(t)Phi(beta)(x) = 0 where Phi(alpha)(s) = vertical bar s vertical bar(alpha-1)s and alpha(1) > ... > alpha(m) > beta > alpha(m+1) > ... > alpha(n) > 0. Under the assumption that the solution of has two consecutive zeros, we obtain Sturm-Picone type and Leighton type comparison theorems for by employing the new nonlinear version of Picone formula that we derive. Wirtinger type inequalities and several oscillation criteria are also attained for (1). Examples are given to illustrate the relevance of the results. Copyright (c) 2016 John Wiley & Sons, Ltd.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Sturmian theory for second order differential equations with mixed nonlinearities
    (Elsevier Science inc, 2015) Ozbekler, A.
    In the paper, Sturmian comparison theory is developed for the pair of second order differential equations; first of which is the nonlinear differential equations (m(t)y')' + s(t)y' + Sigma(n)(i=1)q(i)(t)vertical bar y vertical bar(proportional to j-1)y = 0, with mixed nonlinearities alpha(1) > ... > alpha(m) > 1 > alpha(m+1) > ... > alpha(n), and the second is the non-selfadjoint differential equations (k(t)x')' + r(t)x' + p(t)x = 0. Under the assumption that the solution of Eq. (2) has two consecutive zeros, we obtain Sturm-Picone type and Leighton type comparison theorems for Eq. (1) by employing the new nonlinear version of Picone's formula that we derive. Wirtinger type inequalities and several oscillation criteria are also attained for Eq. (1). Examples are given to illustrate the relevance of the results. (C) 2015 Elsevier Inc. All rights reserved.