Sturmian theory for second order differential equations with mixed nonlinearities

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

In the paper, Sturmian comparison theory is developed for the pair of second order differential equations; first of which is the nonlinear differential equations (m(t)y')' + s(t)y' + Sigma(n)(i=1)q(i)(t)vertical bar y vertical bar(proportional to j-1)y = 0, with mixed nonlinearities alpha(1) > ... > alpha(m) > 1 > alpha(m+1) > ... > alpha(n), and the second is the non-selfadjoint differential equations (k(t)x')' + r(t)x' + p(t)x = 0. Under the assumption that the solution of Eq. (2) has two consecutive zeros, we obtain Sturm-Picone type and Leighton type comparison theorems for Eq. (1) by employing the new nonlinear version of Picone's formula that we derive. Wirtinger type inequalities and several oscillation criteria are also attained for Eq. (1). Examples are given to illustrate the relevance of the results. (C) 2015 Elsevier Inc. All rights reserved.

Description

Keywords

Comparison, Leighton, Mixed nonlinear, Nonselfadjoint, Sturm-Picone, Wirtinger

Turkish CoHE Thesis Center URL

Fields of Science

Citation

6

WoS Q

Q1

Scopus Q

Source

Volume

259

Issue

Start Page

379

End Page

389

Collections