3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 25Citation - Scopus: 32High-Dimensional Optimization of Large-Scale Steel Truss Structures Using Guided Stochastic Search(Elsevier Science inc, 2021) Azad, Saeid Kazemzadeh; Aminbakhsh, SamanDespite a plethora of truss optimization algorithms devised in the recent literature of structural optimization, still high-dimensional large-scale truss optimization problems have not been properly tackled basically due to the excessive computational effort required to handle the foregoing instances. In this study, application of a recently developed design-driven heuristic, namely guided stochastic search (GSS), is extended to a more challenging class of truss optimization problems having thousands of design variables. Two variants of the algorithm, namely GSSA and GSSB, have been employed for sizing optimization of four high-dimensional examples of steel trusses, i.e., a 2075-member single-layer onion dome, a 2688-member double-layer open dome, a 6000-member doublelayer scallop dome, and a 15048-member double-layer grid as per AISC-LRFD specification. The numerical results obtained indicate the efficiency of GSSA and GSSB in handling high-dimensional instances of large-scale steel trusses with up to 15048 discrete design variables.Article Citation - WoS: 33Citation - Scopus: 37Discrete Sizing Optimization of Steel Trusses Under Multiple Displacement Constraints and Load Cases Using Guided Stochastic Search Technique(Springer, 2015) Azad, S. Kazemzadeh; Hasancebi, O.The guided stochastic search (GSS) is a computationally efficient design optimization technique, which is originally developed for discrete sizing optimization problems of steel trusses with a single displacement constraint under a single load case. The present study aims to investigate the GSS in a more general class of truss sizing optimization problems subject to multiple displacement constraints and load cases. To this end, enhancements of the GSS are proposed in the form of two alternative approaches that enable the technique to deal with multiple displacement/load cases. The first approach implements a methodology in which the most critical displacement direction is considered only when guiding the search process. The second approach, however, takes into account the cumulative effect of all the critical displacement directions in the course of optimization. Advantage of the integrated force method of structural analysis is also utilized for further reduction of the computational effort in these approaches. The proposed enhancements of GSS are investigated and compared with some selected techniques of design optimization through six truss structures that are sized for minimum weight. The numerical results reveal that both enhancements generally provide promising solutions with an insignificant computational effort.Article Citation - WoS: 11Citation - Scopus: 12E-Constraint Guided Stochastic Search With Successive Seeding for Multi-Objective Optimization of Large-Scale Steel Double-Layer Grids(Elsevier, 2022) Azad, Saeid Kazemzadeh; Aminbakhsh, SamanThis paper proposes a design-driven structural optimization algorithm named e-constraint guided stochastic search (e-GSS) for multi-objective design optimization of large-scale steel double-layer grids having numerous discrete design variables. Based on the well-known e-constraint method, first, the multi-objective optimization problem is transformed into a set of single-objective optimization problems. Next, each single-objective optimization problem is tackled using an enhanced reformulation of the standard guided stochastic search algorithm proposed based on a stochastic maximum incremental/decremental step size approach. Moreover, a successive seeding strategy is employed in conjunction with the proposed e-GSS algorithm to improve its performance in multi-objective optimization of large-scale steel double-layer grids. The numerical results obtained through multi-objective optimization of three challenging test examples, namely a 1728-member double-layer compound barrel vault, a 2304-member double-layer scallop dome, and a 2400-member double-layer multi-radial dome, demonstrate the usefulness of the proposed e-GSS algorithm in generating Pareto fronts of the foregoing multi-objective structural optimization problems with up to 2400 distinct sizing variables.

