Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Structural and Optical Properties of Thermally Evaporated (gase)0.75-(gas)0.25 Thin Films
    (Elsevier Gmbh, 2021) Isik, M.; Işık, Mehmet; Emir, C.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    GaSe and GaS binary semiconducting compounds are layered structured and have been an attractive research interest in two-dimensional material research area. The present paper aims at growing (GaSe)0.75 - (GaS)0.25 (or simply GaSe0.75S0.25) thin film and investigating its structural and optical properties. Thin films were prepared by thermal evaporation technique using evaporation source of its single crystal grown by Bridgman method. The structural properties were revealed using x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. XRD pattern and EDS analyses indicated that thin films annealed at 300 ?C were successfully deposited and its structural characteristics are well-consistent with its single crystal form. Surface morphology was studied by means of SEM and AFM measurements. Optical properties were investigated by transmission and Raman spectroscopy techniques. Raman spectrum exhibited three peaks around 172, 242 and 342 cm-1. Analyses of transmission spectrum revealed the direct band gap energy as 2.34 eV. The mixed compounds of GaSe0.75S0.25 were prepared for the first time in a thin film form and the results of the present paper would provide valuable information to research area in which layered compounds have been studied in detail.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    Thermoluminescence characteristics of GaSe and Ga2Se3 single crystals
    (Elsevier, 2022) Isik, M.; Sarigul, N.; Gasanly, N. M.
    GaSe and Ga2Se3 are semiconducting compounds formed from same constituent elements. These compounds have been attractive due to their optoelectronic and photovoltaic applications. Defects take remarkable attention since they affect quality of semiconductor devices. In the present paper, deep defect centers in GaSe and Ga2Se3 single crystals grown by Bridgman method were reported from the analyses of thermoluminescence measurements performed in the 350-675 K range. Experimental TL curves of GaSe and Ga2Se3 single crystals presented one and two overlapped peaks, respectively. The applied curve fitting and initial rise techniques were in good agreement about trap activation energies of 0.83 eV for GaSe, 0.96 and 1.24 eV for Ga2Se3 crystals. Crystalline structural properties of the grown single crystals were also investigated by x-ray diffraction measurements. The peaks observed in XRD patterns of the GaSe and Ga2Se3 crystals were well-consistent with hexagonal and zinc blende structures, respectively.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 10
    Optical Conduction in Amorphous Gase Thin Films
    (Elsevier Gmbh, 2016) Qasrawi, A. F.; Khanfar, Hazem. K.; Kmail, Renal R. N.
    In this work, the optical conduction mechanism in GaSe thin films was explored by means of dielectric spectral analysis in the 270-1000 THz range of frequency. The GaSe films which are found to be amorphous in nature are observed to follow the Lorentz approach for optical conduction. The modeling of the optical conductivity which takes into account the damped electronic motion resulting from the collision of photogenerated carriers with impurities, phonons and other damping sources allowed determining the optical conduction parameters. Particularly, an average carrier scattering time, a free carrier density, a reduced resonant frequency, a field effect mobility and an electron bounded plasma frequency of 0.142 (fs), 1.7 x 10(19) (cm(-3)), 875.8 (THz), 1.25 (cm(2)/Vs) and 82.8 (THz), respectively, were determined. These parameters are promising as they indicate the applicability of GaSe in the technology of mid-infrared plasmonic nanoantennas. In addition, the dielectric optical signal which displayed a resonance peak at 500 THz seems to be attractive for use in passive modes operating optoelectronic devices like field effect transistors as they exhibit an increasing signal quality factor with decreasing incident light frequency (C) 2016 Elsevier GmbH. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Temperature-Dependent Current-Voltage Characteristics of p-gase0.75< Heterojunction
    (Springer Heidelberg, 2023) Isik, M.; Surucu, O.; Gasanly, N. M.
    GaSe0.75S0.25 having layered structure is a potential semiconductor compound for optoelectronics and two-dimensional materials technologies. Optical and structural measurements of the GaSe0.75S0.25 thin film grown on the glass substrate showed that the compound has hexagonal structure and band energy of 2.34 eV. GaSe0.75S0.25 thin film was also grown on the silicon wafer and p-GaSe0.75S0.25/n-Si heterojunction was obtained. To make the electrical characterization of this diode, temperature-dependent current-voltage (I-V) measurements were carried out between 240 and 360 K. Room temperature ideality factor and barrier height of the device were determined from the analyses of I-V plot as 1.90 and 0.87 eV, respectively. Temperature-dependent plots of these electrical parameters showed that the ideality factor decreases from 2.19 to 1.77, while barrier height increases to 0.94 from 0.71 eV when the temperature was increased from 240 to 360 K. The conduction mechanism in the heterojunction was studied considering the Gaussian distribution due to presence of inhomogeneity in barrier height. The analyses presented the mean zero-bias barrier height, zero-bias standard deviation, and Richardson constant.