2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 5Citation - Scopus: 6Material Flow Control in High Pressure Sheet Metal Forming of Large Area Parts With Complex Geometry Details(verlag Stahleisen Mbh, 2005) Trompeter, M; Önder, E; Homberg, W; Tekkaya, E; Kleiner, MWorking media based forming processes show advantages compared to the conventional deep drawing in the range of sheet metal parts with complex geometry details. By High Pressure Sheet Metal Forming (HBU), complex parts can be formed with reduced tool costs, fewer process steps, and improved part properties, particularly by the use of high strength steels. In order to use these advantages to full capacity, the material flow into the area of the geometry details needs to be optimised. The key element for the material flow control is a multi-point blank holder. In combination with flange draw-in sensors, a closed loop flange draw-in control can be built up which guarantees a reproducible material flow and, consequently, defined part properties. Furthermore, a favourable pre-distribution of sheet metal material can be reached which leads to a widening of the process limits. Considering a large area sheet metal part with a complex door handle element as example, strategies for the material flow control will be discussed in this paper. The conclusions are based on FE-simulations as well as experimental findings.Article Citation - WoS: 7Citation - Scopus: 7Prediction of White Layer Formation in Μ-Wedm Process of Niti Shape Memory Superalloy: Fem With Experimental Verification(Springer London Ltd, 2021) Ilkhchi, Reza Najati; Akar, Samet; Meshri, Hassan Ali M.; Seyedzavvar, MirsadeghMicroscopic changes in the surface of nickel-titanium (nitinol) shape memory alloys (SMAs) in micro-wire electro-discharge machining (mu-WEDM) due to the formation of a resolidified layer on the machined surface, called white layer, are one of the main drawbacks in the processing of such alloys. Since these changes significantly affect the shape memory and elastic recovery characteristics of these alloys, reduction of the white layer thickness (WLT) based on the selection of optimum process parameters is essential to raise the quality of the machined parts. In this regard, a finite element model (FEM) has been developed to simulate the effects of mu-WEDM process parameters, including discharge current, pulse on-time, pulse off-time, and servo voltage, on the heat distributing in Ni55.8Ti SMA to predict the WLT. The flushing efficiency of electric discharges and the effect of flow regime of the dielectric fluid on the heat distribution in the workpiece and the formation of the WLT are analyzed. Experimental data are used to verify the accuracy of the FEM. The results show that the developed model can predict the WLT in mu-WEDM process of Ni55.8Ti SMA with an average error of 14%. The effects of discharge parameters on the formation of the WLT are discussed in details based on the results of the FEM.

