Prediction of white layer formation in μ-WEDM process of NiTi shape memory superalloy: FEM with experimental verification

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Springer London Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Mechanical Engineering
(2016)
The Mechanical Engineering Doctoral Program has started in 2016-2017 academic year. We have highly qualified teaching and research faculty members and strong research infrastructure in the department for graduate work. Research areas include computational and experimental research in fluid and solid mechanics, heat and mass transfer, advanced manufacturing, composites and other advanced materials. Our fundamental mission is to train engineers who are able to work with advanced technology, create innovative approaches and authentic designs, apply research methods effectively, conduct research and develop high quality methods and products in space, aviation, defense, medical and automotive industries, with a contemporary education and research infrastructure.

Journal Issue

Abstract

Microscopic changes in the surface of nickel-titanium (nitinol) shape memory alloys (SMAs) in micro-wire electro-discharge machining (mu-WEDM) due to the formation of a resolidified layer on the machined surface, called white layer, are one of the main drawbacks in the processing of such alloys. Since these changes significantly affect the shape memory and elastic recovery characteristics of these alloys, reduction of the white layer thickness (WLT) based on the selection of optimum process parameters is essential to raise the quality of the machined parts. In this regard, a finite element model (FEM) has been developed to simulate the effects of mu-WEDM process parameters, including discharge current, pulse on-time, pulse off-time, and servo voltage, on the heat distributing in Ni55.8Ti SMA to predict the WLT. The flushing efficiency of electric discharges and the effect of flow regime of the dielectric fluid on the heat distribution in the workpiece and the formation of the WLT are analyzed. Experimental data are used to verify the accuracy of the FEM. The results show that the developed model can predict the WLT in mu-WEDM process of Ni55.8Ti SMA with an average error of 14%. The effects of discharge parameters on the formation of the WLT are discussed in details based on the results of the FEM.

Description

Oliaei, Samad Nadimi Bavil/0000-0002-3202-1362; Seyedzavvar, Mirsadegh/0000-0002-3324-7689

Keywords

Ni55.8TiSMA., mu-WEDM, Electric discharge, Molten crater, White layer thickness, FEM

Turkish CoHE Thesis Center URL

Citation

2

WoS Q

Q2

Scopus Q

Source

Volume

113

Issue

9-10

Start Page

2805

End Page

2817

Collections