4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 11Citation - Scopus: 20The Taylor Series Method and Trapezoidal Rule on Time Scales(Elsevier Science inc, 2020) Georgiev, Svetlin G.; Erhan, Inci M.The Taylor series method for initial value problems associated with dynamic equations of first order on time scales with delta differentiable graininess function is introduced. The trapezoidal rule for the same types of problems is derived and applied to specific examples. Numerical results are presented and discussed. (c) 2020 Elsevier Inc. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 3Lyapunov-Type Inequalities for Lidstone Boundary Value Problems on Time Scales(Springer-verlag Italia Srl, 2020) Agarwal, Ravi P.; Oguz, Arzu Denk; Ozbekler, AbdullahIn this paper, we establish new Hartman and Lyapunov-type inequalities for even-order dynamic equations x.2n (t) + (-1)n-1q(t) xs (t) = 0 on time scales T satisfying the Lidstone boundary conditions x.2i (t1) = x.2i (t2) = 0; t1, t2. [t0,8) T for i = 0, 1,..., n - 1. The inequalities obtained generalize and complement the existing results in the literature.Article Citation - Scopus: 5Adomian Polynomials Method for Dynamic Equations on Time Scales(DergiPark, 2021) Georgiev,S.G.; Erhan,I.M.A recent study on solving nonlinear differential equations by a Laplace transform method combined with the Adomian polynomial representation, is extended to the more general class of dynamic equations on arbitrary time scales. The derivation of the method on time scales is presented and applied to particular examples of initial value problems associated with nonlinear dynamic equations of first order. © 2021, DergiPark. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1Prescribed Asymptotic Behavior of Nonlinear Dynamic Equations Under Impulsive Perturbations(Springer Basel Ag, 2024) Zafer, Agacik; Dogru Akgol, SibelThe asymptotic integration problem has a rich historical background and has been extensively studied in the context of ordinary differential equations, delay differential equations, dynamic equations, and impulsive differential equations. However, the problem has not been explored for impulsive dynamic equations due to the lack of essential tools such as principal and nonprincipal solutions, as well as certain compactness results. In this work, by making use of the principal and nonprincipal solutions of the associated linear dynamic equation, recently obtained in [Acta Appl. Math. 188, 2 (2023)], we investigate the asymptotic integration problem for a specific class of nonlinear impulsive dynamic equations. Under certain conditions, we prove that the given impulsive dynamic equation possesses solutions with a prescribed asymptotic behavior at infinity. These solutions can be expressed in terms of principal and nonprincipal solutions as in differential equations. In addition, the necessary compactness results are also established. Our findings are particularly valuable for better understanding the long-time behavior of solutions, modeling real-world problems, and analyzing the solutions of boundary value problems on semi-infinite intervals.

