3 results
Search Results
Now showing 1 - 3 of 3
Article Hopping Conduction in Ga4se3< Layered Single Crystals(Pergamon-elsevier Science Ltd, 2008) Qasrawi, A. F.; Gasanly, N. M.The conduction mechanism in Ga4Se3S single crystals has been investigated by means of dark and illuminated conductivity measurements for the first time. The temperature-dependent electrical conductivity analysis in the region of 100-350 K, revealed the dominance of the thermionic emission and the thermally assisted variable range hopping (VRH) of charged carriers above and below 170 K, respectively. The density of states near the Fermi level and the average hopping distance for this crystal in the dark were found to be 7.20 x 10(15) cm(-3) eV(-1) and 7.56 x 10(-6) cm, respectively. When the sample was illuminated, the Mott's VRH parameters are altered, particularly, the average hopping distance and the density of states near the Fermi level increase when light intensity increases. This action is attributed to the electron generation by photon absorption, which in turn leads to the Fermi level shift and/or trap density reduction by electron-hole recombination. (C) 2008 Elsevier Ltd. All rights reserved.Article Citation - WoS: 18Citation - Scopus: 18Heat Treatment Effects on the Structural and Electrical Properties of Thermally Deposited Agin5s8< Thin Films(Pergamon-elsevier Science Ltd, 2011) Qasrawi, A. F.; Kayed, T. S.; Ercan, FilizThe heat treatment effects on structural and electrical properties of thermally deposited AgIn5S8 thin films have been investigated. By increasing the annealing temperature of the sample from 450 to 500 K, we observed a change in the crystallization direction from (420) to (311). Further annealing of the AgIn5S8 films at 550, 600 and 650 K resulted in larger grain size in the (311) preferred direction. The room temperature electrical resistivity, Hall coefficient and Hall mobility were significantly influenced by higher annealing temperatures. Three impurity levels at 230, 150, and 78 meV were detected for samples annealed at 350 K. The electrical resistivity decreased by four orders of magnitude when the sample annealing temperature was raised from 350 to 450 K. The temperature dependent electrical resistivity and carrier concentration of the thin film samples were studied in the temperature ranges of 25-300 K and 140-300 K, respectively. A degenerate-nondegenerate semiconductor transition at approximately 180 was observed for samples annealed at 450 and 500 K. Similar type of transition was observed at 240 K for samples annealed at 600 and 650 K. (C) 2011 Elsevier Ltd. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Anisotropic Electrical and Dispersive Optical Parameters in Ins Layered Crystals(Pergamon-elsevier Science Ltd, 2010) Qasrawi, A. F.; Gasanly, N. M.The anisotropy effect on the current transport mechanism and on the dispersive optical parameters of indium monosulfide crystals has been studied by means of electrical conductivity and polarized reflectance measurements along the a-axis and the b-axis, respectively. The temperature-dependent electrical conductivity analysis in the range 10-350 K for the a-axis and in the range 30-350 K for the b-axis revealed the domination of the thermionic emission of charge carriers and the domination of variable range hopping above and below 100 K, respectively. At high temperatures (T > 100 K) the conductivity anisotropy, s, decreased sharply with decreasing temperature following the law s proportional to exp(-E(s)/kT). The anisotropy activation energy, E(s), was found to be 330 and 17 meV above and below 220 K, respectively. Below 100 K, the conductivity anisotropy is invariant with temperature. in that region, the calculated hopping parameters are altered significantly by the conductivity anisotropy. The optical reflectivity analysis in the wavelength range 250-650 nm revealed a clear anisotropy effect on the dispersive optical parameters. In particular, the static refractive index, static dielectric constant, lattice dielectric constant, dispersion energy and oscillator energy exhibited values of 2.89, 8.39, 19.7, 30.02 eV and 4.06 eV, and values of 2.76, 7.64, 25.9, 22.26 eV and 3.35 eV for light polarized along the a-axis and the b-axis, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

