Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Aptamer decorated PDA@magnetic silica microparticles for bacteria purification
    (Springer Wien, 2024) Kavruk, Murat; Babaie, Zahra; Kibar, Gunes; Cetin, Barbaros; Yesilkaya, Hasan; Amrani, Yassine; Ozalp, V. Cengiz
    One significant constraint in the advancement of biosensors is the signal-to-noise ratio, which is adversely affected by the presence of interfering factors such as blood in the sample matrix. In the present investigation, a specific aptamer binding was chosen for its affinity, while exhibiting no binding affinity towards non-target bacterial cells. This selective binding property was leveraged to facilitate the production of magnetic microparticles decorated with aptamers. A novel assay was developed to effectively isolate S. pneumoniae from PBS or directly from blood samples using an aptamer with an affinity constant of 72.8 nM. The capture experiments demonstrated efficiencies up to 87% and 66% are achievable for isolating spiked S. pneumoniae in 1 mL PBS and blood samples, respectively.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 28
    High-Efficiency Application of Cts-Co Nps Mimicking Peroxidase Enzyme on Tmb(ox)
    (Pergamon-elsevier Science Ltd, 2022) Altuner, Elif Esra; Ozalp, Veli Cengiz; Yilmaz, M. Deniz; Bekmezci, Muhammed; Sen, Fatih
    In this study, analytical studies of Chitosan-Cobalt(II) (CTS-Co(II)) nanoparticles (CTS - Co NPs) by mimicking horseradish peroxidase (HRP) were evaluated. In the applications, it was observed that CTS-Co NPs 3,3 ' 5,5 ' tetramethylbenzidine (TMB) oxidized in the presence of hydrogen peroxide (H2O2). The required CTS-Co NPs were synthesized at 50 degrees C in 30 min and characterized using Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and Xray photon spectroscopy (XPS) was done. CTS-Co NPs were studied to develop a selective TMB biosensor on TMB (ox) substrate. The synthesized CTS-Co NPs formed a catalytic reaction with 30% 0.2 mM H2O2 on 0.2 M TMB substrate. After the catalytic reaction, sensitive signals were obtained from the desired biosensor. Electrochemical measurements were taken as low limit of 10 mg and a high limit of 20 mg for the determination of CTSCo NPs to TMB(ox). In the microplate study; The sensors were applied on 1.5 mu g and 3 mu g CTS-Co NPs TMB(ox) substrate, respectively. CTS- Co NPs; for TMB(ox) determination, optical density (OD) measurement was taken as a low limit of 1.5 mu g and a high limit of 3 mu g. Electrochemical applications of particles and microplate reader results were compared with horseradish peroxidase (HRP) enzyme for sensor properties. According to the data obtained, it was observed that it behaved similarly to the CTS-Co NPs peroxidase enzyme. This work presents innovations for nanoparticle extraction and sensor study from chitosan and other naturally sourced polymers.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Biosensor for Atp Detection Via Aptamer-Modified Pda@poss Nanoparticles Synthesized in a Microfluidic Reactor
    (Springer Wien, 2024) Kibar, Gunes; Sahinoglu, O. Berkay; Kilincli, Betul; Erdem, E. Yegan; Cetin, Barbaros; Ozalp, V. Cengiz
    This study introduces aptamer-functionalized polyhedral oligomeric silsesquioxane (POSS) nanoparticles for adenosine triphosphate (ATP) detection where the POSS nanoparticles were synthesized in a one-step, continuous flow microfluidic reactor utilizing thermal polymerization. A microemulsion containing POSS monomers was generated in the microfluidic reactor which was designed to prevent clogging by using a continuous oil flow around the emulsion during thermal polymerization. Surfaces of POSS nanoparticles were biomimetically modified by polydopamine. The aptamer sequence for ATP was successfully attached to POSS nanoparticles. The aptamer-modified POSS nanoparticles were tested for affinity-based biosensor applications using ATP as a model molecule. The nanoparticles were able to capture ATP molecules successfully with an affinity constant of 46.5 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}M. Based on this result, it was shown, for the first time, that microfluidic synthesis of POSS nanoparticles can be utilized in designing aptamer-functionalized nanosystems for biosensor applications. The integration of POSS in biosensing technologies not only exemplifies the versatility and efficacy of these nanoparticles but also marks a significant contribution to the field of biorecognition and sample preparation.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Microfluidic Rapid Isolation and Electrochemical Detection of S. Pneumonia Via Aptamer-Decorated Surfaces
    (Elsevier, 2025) Babaie, Zahra; Kibar, Gunes; Yesilkaya, Hasan; Amrani, Yassine; Dogan, Soner; Tuna, Bilge G.; Cetin, Barbaros; Özalp, Veli Cengiz
    Background: S. pneumoniae is widely recognized as a leading cause of respiratory infections worldwide, often resulting in high mortality rates. However, the advent of microfluidic technologies has brought significant advancements, including the simplified, sensitive, cost-effective, and rapid approach to pneumococcal bacteremia detection. In this study, a microfluidic magnetic platform is presented for rapid isolation, and an electrode array is utilized for the electrochemical detection of S. pneumoniae. Aptamer-decorated surfaces were employed for both isolation and detection. For isolation, silica magnetic microparticles were synthesized and decorated with aptamer. Results: Isolation performance was assessed for phosphate-buffered saline (PBS) and blood samples for different concentrations of S. pneumoniae. Electrical impedance spectroscopy (EIS) with fabricated gold interdigitated electrodes (IDEs) decorated with aptamer was implemented for the detection of S. pneumoniae at different bacteria concentrations. The microfluidic platform performed bacteria isolation at comparable isolation efficiency with batch systems but at a much faster rate (isolation took about a minute, and the aptamer-decorated electrode array exhibited a limit of detection (LOD) at 962 CFU/mL and linear range between 104 and 107CFU/mL. Significance: Our method represents a significant advancement compared to previous reports. Our microfluidic platform can efficiently isolate 60 mu L of the bacteria sample within about one minute. The entire process takes about two minutes including the detection step. Furthermore, our method achieves a notable improvement in the detection limit for S. pneumoniae compared to conventional ELISA and magnetic microfluidics ELISA.