Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 21
    Citation - Scopus: 34
    An Artificial Neural Network Model for Road Accident Prediction: a Case Study of a Developing Country
    (Budapest Tech, 2014) Ogwueleka, Francisca Nonyelum; Misra, Sanjay; Ogwueleka, Toochukwu Chibueze; Fernandez-Sanz, L.; Computer Engineering
    Road traffic accidents (RTA) are one of the major root causes of the unnatural loses of human beings all over the world. Although the rates of RTAs are decreasing in most developed countries, this is not the case in developing countries. The increase in the number of vehicles and inefficient drivers on the road, as well as to the poor conditions and maintenance of the roads, are responsible for this crisis in developing countries. In this paper, we produce a design of an Artificial Neural Network (ANN) model for the analysis and prediction of accident rates in a developing country. We apply the most recent (1998 to 2010) data to our model. In the design, the number of vehicles, accidents, and population were selected and used as model parameters. The sigmoid and linear functions were used as activation functions with the feed forward-back propagation algorithm. The performance evaluation of the model signified that the ANN model is better than other statistical methods in use.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Comparison of Different Calibration Techniques of Laser Induced Breakdown Spectroscopy in Bakery Products: on Nacl Measurement
    (Springer, 2021) Bilge, Gonca; Eseller, Kemal Efe; Berberoglu, Halil; Sezer, Banu; Tamer, Ugur; Boyaci, Ismail Hakki
    Laser induced breakdown spectroscopy (LIBS) is a rapid optical spectroscopy technique for elemental determination, which has been used for quantitative analysis in many fields. However, the calibration involving atomic emission intensity and sample concentration, is still a challenge due to physical-chemical matrix effect of samples and fluctuations of experimental parameters. To overcome these problems, various chemometric data analysis techniques have been combined with LIBS technique. In this study, LIBS was used to show its potential as a routine analysis for Na measurements in bakery products. A series of standard bread samples containing various concentrations of NaCl (0.025%-3.5%) was prepared to compare different calibration techniques. Standard calibration curve (SCC), artificial neural network (ANN) and partial least square (PLS) techniques were used as calibration strategies. Among them, PLS was found to be more efficient for predicting the Na concentrations in bakery products with an increase in coefficient of determination value from 0.961 to 0.999 for standard bread samples and from 0.788 to 0.943 for commercial products.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 17
    Cutting Force Prediction in Ultrasonic-Assisted Milling of Ti-6al With Different Machining Conditions Using Artificial Neural Network
    (Cambridge University Press, 2021) Namlu,R.H.; Turhan,C.; Sadigh,B.L.; Kiliç,S.E.
    Ti-6Al-4V alloy has superior material properties such as high strength-to-weight ratio, good corrosion resistance, and excellent fracture toughness. Therefore, it is widely used in aerospace, medical, and automotive industries where machining is an essential process for these industries. However, machining of Ti-6Al-4V is a material with extremely low machinability characteristics; thus, conventional machining methods are not appropriate to machine such materials. Ultrasonic-assisted machining (UAM) is a novel hybrid machining method which has numerous advantages over conventional machining processes. In addition, minimum quantity lubrication (MQL) is an alternative type of metal cutting fluid application that is being used instead of conventional lubrication in machining. One of the parameters which could be used to measure the performance of the machining process is the amount of cutting force. Nevertheless, there is a number of limited studies to compare the changes in cutting forces by using UAM and MQL together which are time-consuming and not cost-effective. Artificial neural network (ANN) is an alternative method that may eliminate the limitations mentioned above by estimating the outputs with the limited number of data. In this study, a model was developed and coded in Python programming environment in order to predict cutting forces using ANN. The results showed that experimental cutting forces were estimated with a successful prediction rate of 0.99 with mean absolute percentage error and mean squared error of 1.85% and 13.1, respectively. Moreover, considering too limited experimental data, ANN provided acceptable results in a cost-and time-effective way. Copyright © The Author(s), 2020. Published by Cambridge University Press.
  • Article
    Citation - WoS: 47
    Citation - Scopus: 62
    An Empirical Analysis of the Effectiveness of Software Metrics and Fault Prediction Model for Identifying Faulty Classes
    (Elsevier, 2017) Kumar, Lov; Misra, Sanjay; Rath, Santanu Ku.
    Software fault prediction models are used to predict faulty modules at the very early stage of software development life cycle. Predicting fault proneness using source code metrics is an area that has attracted several researchers' attention. The performance of a model to assess fault proneness depends on the source code metrics which are considered as the input for the model. In this work, we have proposed a framework to validate the source code metrics and identify a suitable set of source code metrics with the aim to reduce irrelevant features and improve the performance of the fault prediction model. Initially, we applied a t-test analysis and univariate logistic regression analysis to each source code metric to evaluate their potential for predicting fault proneness. Next, we performed a correlation analysis and multivariate linear regression stepwise forward selection to find the right set of source code metrics for fault prediction. The obtained set of source code metrics are considered as the input to develop a fault prediction model using a neural network with five different training algorithms and three different ensemble methods. The effectiveness of the developed fault prediction models are evaluated using a proposed cost evaluation framework. We performed experiments on fifty six Open Source Java projects. The experimental results reveal that the model developed by considering the selected set of source code metrics using the suggested source code metrics validation framework as the input achieves better results compared to all other metrics. The experimental results also demonstrate that the fault prediction model is best suitable for projects with faulty classes less than the threshold value depending on fault identification efficiency (low - 48.89%, median- 39.26%, and high - 27.86%).