Cutting force prediction in ultrasonic-assisted milling of Ti-6Al-4V with different machining conditions using artificial neural network

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge Univ Press

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.
Organizational Unit
Mechanical Engineering
(2009)
The Atılım University Department of Mechanical Engineering started education in 2009, and offers graduate and doctorate degree programs, in addition to its undergraduate program. Our main goal is to graduate Mechanical Engineers who have the skills to design, analyze and synthesize; who are able to convert advanced technology and innovations into products; and who have the culture of research and cooperation. While our graduates reach this goal, they adopt the principle of life-long learning, and develop a sense of entrepreneurship, paying importance to professional ethics. With a curriculum prepared in line with the criteria of MÜDEK, we help our students develop themselves professionally, and socially. Graduates of mechanical engineering may be employed in many sectors and in a wide array of positions. Able to work under any field that involves production and energy conversion, graduates of the department may also gain expertise in fields such as aviation, automotive, or material engineering.
Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

Ti-6Al-4V alloy has superior material properties such as high strength-to-weight ratio, good corrosion resistance, and excellent fracture toughness. Therefore, it is widely used in aerospace, medical, and automotive industries where machining is an essential process for these industries. However, machining of Ti-6Al-4V is a material with extremely low machinability characteristics; thus, conventional machining methods are not appropriate to machine such materials. Ultrasonic-assisted machining (UAM) is a novel hybrid machining method which has numerous advantages over conventional machining processes. In addition, minimum quantity lubrication (MQL) is an alternative type of metal cutting fluid application that is being used instead of conventional lubrication in machining. One of the parameters which could be used to measure the performance of the machining process is the amount of cutting force. Nevertheless, there is a number of limited studies to compare the changes in cutting forces by using UAM and MQL together which are time-consuming and not cost-effective. Artificial neural network (ANN) is an alternative method that may eliminate the limitations mentioned above by estimating the outputs with the limited number of data. In this study, a model was developed and coded in Python programming environment in order to predict cutting forces using ANN. The results showed that experimental cutting forces were estimated with a successful prediction rate of 0.99 with mean absolute percentage error and mean squared error of 1.85% and 13.1, respectively. Moreover, considering too limited experimental data, ANN provided acceptable results in a cost- and time-effective way.

Description

Namlu, Ramazan Hakkı/0000-0002-7375-8934; Sadigh, Bahram Lotfi/0000-0002-3027-3734

Keywords

Artificial neural network, cutting force, minimum quantity lubrication, ultrasonic-assisted milling

Turkish CoHE Thesis Center URL

Citation

6

WoS Q

Q3

Scopus Q

Source

Volume

35

Issue

1

Start Page

37

End Page

48

Collections