Cutting Force Prediction in Ultrasonic-Assisted Milling of Ti-6al With Different Machining Conditions Using Artificial Neural Network

dc.authoridNamlu, Ramazan Hakkı/0000-0002-7375-8934
dc.authoridSadigh, Bahram Lotfi/0000-0002-3027-3734
dc.authorscopusid57219420293
dc.authorscopusid56011415300
dc.authorscopusid55346613600
dc.authorscopusid7006243664
dc.authorwosidNamlu, Ramazan Hakkı/JEF-6512-2023
dc.authorwosidTurhan, Cihan/ABD-1880-2021
dc.authorwosidSadigh, Bahram Lotfi/F-6523-2012
dc.contributor.authorNamlu,R.H.
dc.contributor.authorTurhan,C.
dc.contributor.authorSadigh,B.L.
dc.contributor.authorKiliç,S.E.
dc.contributor.otherEnergy Systems Engineering
dc.contributor.otherMechanical Engineering
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T15:18:53Z
dc.date.available2024-07-05T15:18:53Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-tempNamlu R.H., Manufacturing Engineering Department, Atlllm University, Ankara, Turkey; Turhan C., Energy Systems Engineering Department, Atlllm University, Ankara, Turkey; Sadigh B.L., Manufacturing Engineering Department, Atlllm University, Ankara, Turkey; Kiliç S.E., Manufacturing Engineering Department, Atlllm University, Ankara, Turkeyen_US
dc.descriptionNamlu, Ramazan Hakkı/0000-0002-7375-8934; Sadigh, Bahram Lotfi/0000-0002-3027-3734en_US
dc.description.abstractTi-6Al-4V alloy has superior material properties such as high strength-to-weight ratio, good corrosion resistance, and excellent fracture toughness. Therefore, it is widely used in aerospace, medical, and automotive industries where machining is an essential process for these industries. However, machining of Ti-6Al-4V is a material with extremely low machinability characteristics; thus, conventional machining methods are not appropriate to machine such materials. Ultrasonic-assisted machining (UAM) is a novel hybrid machining method which has numerous advantages over conventional machining processes. In addition, minimum quantity lubrication (MQL) is an alternative type of metal cutting fluid application that is being used instead of conventional lubrication in machining. One of the parameters which could be used to measure the performance of the machining process is the amount of cutting force. Nevertheless, there is a number of limited studies to compare the changes in cutting forces by using UAM and MQL together which are time-consuming and not cost-effective. Artificial neural network (ANN) is an alternative method that may eliminate the limitations mentioned above by estimating the outputs with the limited number of data. In this study, a model was developed and coded in Python programming environment in order to predict cutting forces using ANN. The results showed that experimental cutting forces were estimated with a successful prediction rate of 0.99 with mean absolute percentage error and mean squared error of 1.85% and 13.1, respectively. Moreover, considering too limited experimental data, ANN provided acceptable results in a cost-and time-effective way. Copyright © The Author(s), 2020. Published by Cambridge University Press.en_US
dc.description.sponsorshipAtilim Üniversitesi, (ATÜ-BAD-1819-02)en_US
dc.identifier.citation6
dc.identifier.doi10.1017/S0890060420000360
dc.identifier.endpage48en_US
dc.identifier.issn0890-0604
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85092615423
dc.identifier.scopusqualityQ2
dc.identifier.startpage37en_US
dc.identifier.urihttps://doi.org/10.1017/S0890060420000360
dc.identifier.volume35en_US
dc.identifier.wosWOS:000621807500004
dc.identifier.wosqualityQ3
dc.institutionauthorNamlu, Ramazan Hakkı
dc.institutionauthorTurhan, Cihan
dc.institutionauthorLotfısadıgh, Bahram
dc.institutionauthorKılıç, Sadık Engin
dc.institutionauthorNamlu, Ramazan Hakkı
dc.institutionauthorTurhan, Cihan
dc.institutionauthorLotfısadıgh, Bahram
dc.institutionauthorKılıç, Sadık Engin
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofArtificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAMen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectcutting forceen_US
dc.subjectminimum quantity lubricationen_US
dc.subjectultrasonic-assisted millingen_US
dc.titleCutting Force Prediction in Ultrasonic-Assisted Milling of Ti-6al With Different Machining Conditions Using Artificial Neural Networken_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication9c962a9f-87e4-45e4-8a17-c7b6c9378211
relation.isAuthorOfPublication14edd55f-2035-410b-a400-63a1319bdfe5
relation.isAuthorOfPublicationa770c153-b9da-4fcc-a49e-f215d0c13920
relation.isAuthorOfPublicationd70c9839-4358-47dd-834e-fc115cb0fca3
relation.isAuthorOfPublication.latestForDiscovery9c962a9f-87e4-45e4-8a17-c7b6c9378211
relation.isOrgUnitOfPublication80f84cab-4b75-401b-b4b1-f2ec308f3067
relation.isOrgUnitOfPublicationd2cd5950-09a4-4d1d-976e-01f8f7ee4808
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery80f84cab-4b75-401b-b4b1-f2ec308f3067

Files

Collections