Search Results

Now showing 1 - 3 of 3
  • Article
    An Empirical Study of the Technoparks in Turkey in Investigating the Challenges and Potential of Designing Intelligent Spaces
    (Mdpi, 2023) Erisen, Serdar
    The use of innovative technologies in workspaces, such as the Internet of Things (IoT) and smart systems, has been increasing, yet it remains in the minority of the total number of smart system applications. However, universities and technopoles are part of open innovation that can encourage experimental IoT and smart system projects in places. This research considers the challenges and advantages of developing intelligent environments with smart systems in the Technology Development Zones (TDZs) of Turkey. The growth of Silicon Valley has inspired many technopoles in different countries. Thus, the article includes first a comprehensive survey of the story of Silicon Valley and the emerging technological potential of open and responsible innovation for intelligent spaces and technoparks with rising innovative interest. The study then conducts empirical research in inspecting the performance of TDZs in Turkey. In the research, machine learning and Artificial Intelligence (AI) models are applied in the analyses of critical performance indicators for encouraging incentives and investments in innovative attempts and productivity in TDZs; the challenges, potential, and need for intelligent spaces are evaluated accordingly. This article also reports on the minority of the design staff and the lack of innovation in developing intelligent spaces in the organization of the creative class in Turkey. Consequently, the research proposes a set of implementations for deploying intelligent spaces to be practiced in new and existing TDZs by considering their potential for sustainable and responsible innovation.
  • Review
    Citation - WoS: 5
    Citation - Scopus: 8
    Monkeypox: a Comprehensive Review of Virology, Epidemiology, Transmission, Diagnosis, Prevention, Treatment, and Artificial Intelligence Applications
    (Shaheed Beheshti University of Medical Sciences and Health Services, 2024) Rahmani,E.; Bayat,Z.; Farrokhi,M.; Karimian,S.; Zahedpasha,R.; Sabzehie,H.; Farrokhi,M.
    Monkeypox (Mpox), an uncommon zoonotic Orthopoxvirus, is commonly manifested by blisters on the skin and has a mortality rate of approximately 0-10%. Approximately two decades after the cessation of global smallpox vaccination, the number of confirmed cases of Mpox has been growing, making it the most common Orthopoxvirus infection. Therefore, in this narrative review, we aimed to shed light on recent advancements in the pathophysiology, transmission routes, epidemiology, manifestations, diagnosis, prevention, and treatment of Mpox, as well as the application of artificial intelligence (AI) methods for predicting this disease. The clinical manifestations of Mpox, including the onset of symptoms and dermatologic characteristics, are similar to those of the infamous smallpox, but Mpox is clinically milder. Notably, a key difference between smallpox and Mpox is the high prevalence of lymphadenopathy. Human-to-human, animal-to-human, and animal-to-animal transmission are the three main pathways of Mpox spread that must be considered for effective prevention, particularly during outbreaks. PCR testing, as the preferred method for diagnosing Mpox infection, can enhance early detection of new cases and thereby improve infection control measures. JYNNEOS and ACAM2000 are among the vaccines most commonly recommended for the prevention of Mpox. Brincidofovir, Cidofovir, and Tecovirimat are the primary treatments for Mpox cases. Similar to other viral infections, the best approach to managing Mpox is prevention. This can, in part, be achieved through measures such as reducing contact with individuals displaying symptoms, maintaining personal safety, and adhering to practices commonly used to prevent sexually transmitted infections. © This open-access article distributed under the terms of the Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0).
  • Article
    Factors Affecting Dentists' Intention To Adopt Artificial Intelligence: An Extension of the Unified Theory of Acceptance and Use of Technology (UTAUT) Model
    (Emerald Group Publishing Ltd, 2025) Alqaifi, Faten; Tengilimoglu, Dilaver
    PurposeAdvancements in science and technology have integrated artificial intelligence (AI) into dentistry, improving treatment processes, operational efficiency, and clinical outcomes. However, AI adoption among dentists remains underexplored, hindering progress in oral healthcare. This study aims to identify key barriers to AI adoption and examine factors influencing dentists' intention to use AI.Design/methodology/approachA quantitative cross-sectional approach was employed, utilizing self-administered questionnaires distributed online and across various dental clinics and hospitals in Ankara, Turkey. A total of 440 dentists participated in the study. Data analysis was conducted using SPSS and SmartPLS.FindingsThe study found that AI-anxiety negatively affects the intention to adopt AI in dentistry, showing a medium (almost large) effect that is stronger than other UTAUT factors such as performance expectancy, effort expectancy, and social influence, which demonstrated only small effects. Dentists with higher anxiety about learning and sociotechnical blindness are less likely to adopt AI, while concerns about job replacement and AI-configuration have less but still significant impact.Research limitations/implicationsThese results contribute to the growing body of knowledge on technology adoption in oral healthcare and provide practical implications for technology developers, policymakers, and other stakeholders seeking to facilitate AI integration in dentistry.Originality/valueThis study provides novel insights into AI adoption in dentistry, offering guidance for future development and integration, and addressing a critical research gap in a growing field-particularly in Turkey, where implementation is still in its early stages.