4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 1Carrier Transport Properties of Ins Single Crystals(Wiley-blackwell, 2003) Qasrawi, AF; Gasanly, NMThe electrical resistivity and Hall effect of indium sulfide single crystals are measured in the temperature range from 25 to 350 K. The donor energy levels located at 500, 40 and 10 meV below the conduction band are identified from both measurements. The data analysis of the temperature-dependent Hall effect measurements revealed a carrier effective mass of 0.95 m(0), a carrier compensation ratio of 0.9 and an acoustic deformation potential of 6 eV. The Hall mobility data are analyzed assuming the carrier scattering by acoustic and polar optical phonons, and ionized impurities.Article Citation - WoS: 11Cd-Doping Effects on the Properties of Polycrystalline Α-in2se3< Thin Films(Wiley-v C H verlag Gmbh, 2002) Qasrawi, AFThe X-ray diffraction has revealed that the polycrystalline hexagonal structured alpha-In2Se3 thin films grown at substrate temperature of 200degreesC with the unit cell parameters a=4.03degreesA and c=19.23degreesA becomes polycrystalline hexagonal structured InSe with a unit cell parameters of a=4.00degreesA and c=16.63degreesA by Cd-doping. The analysis of the conductivity temperature dependence in the range 300-40 K revealed that the thermionic emission of charged carriers and the variable range hopping are the predominant conduction mechanism above and below 100 K, respectively. Hall measurements revealed that the mobility is limited by the scattering of charged carriers through the grain boundaries above 200 K and 120 K for the undoped and Cd-doped samples, respectively. The photocurrent (I-ph) increases with increasing illumination intensity (T) and decreasing temperature up to a maximum temperature of similar to100 K, below which I-ph is temperature invariant. It is found to have the monomolecular and bimolccular recombination characters at low and high illumination intensities, respectively. The Cd-doping increases the density of trapping states that changes the position of the dark Fermi level leading to the deviation from linearity in the dependence of I-ph on F at low illumination intensities.Article Citation - WoS: 21Citation - Scopus: 22Investigation of Carrier Scattering Mechanisms in Tiins2 Single Crystals by Hall Effect Measurements(Wiley-v C H verlag Gmbh, 2004) Qasrawi, AF; Gasanly, NMTlInS2 single crystals are studied through the conductivity and Hall effect measurements in the temperature regions of 100-400 and 170-400 K, respectively. An anomalous behavior of Hall voltage, which changes sign below 315 K, is interpreted through the existence of deep donor impurity levels that behave as acceptor levels when are empty. The hole and electron mobility are limited by the hole- and electron-phonon short range interactions scattering above and below 315 K, respectively. An energy level of 35 meV and a set of donor energy levels located at 360, 280, 220 and 170/152 meV are determined from the temperature dependencies of the carrier concentration and conductivity. A hole, electron, hole-electron pair effective masses of 0.24 in,, 0.14 m(o) and 0.09 m(o) and hole- and electron-phonon coupling constants of 0.50 and 0.64, respectively, are obtained from the Hall effect measurements. The theoretical fit of the Hall coefficient reveals a hole to electron mobility ratio of 0.8. (C) 2004 WILEY-VCH Verlag Gmbh & Co. KGaA, Weinheim.Article Citation - WoS: 26Citation - Scopus: 26Etectron-Phonon Short-Range Interactions Mobility and P- To N-Type Conversion in Tlgas2 Crystal(Wiley-v C H verlag Gmbh, 2006) Qasrawi, AF; Gasanly, NMThe conductivity type conversion from p- to n-type at a critical temperature of 315 K in TlGaS2 crystals is observed through the Hall effect measurements in the temperature range of 200-350 K. The analysis of the temperature-dependent electrical resistivity, Hall coefficient and carrier concentration data reveals the extrinsic type of conduction with donor impurity levels that behave as acceptor levels when are empty. The data analysis allowed the calculation of hole and electron effective masses of 0.36m(0) and 0.23m(0), respectively. In addition, the temperature-dependent Hall mobility is found to decrease with temperature following a logarithmic slope of similar to 1.6. The Hall mobility in the n-region is limited by the electron-phonon short-range interactions scattering with an electron-phonon coupling constant of 0.21. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

