Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Investigation of Defect Levels in Bi12sio20< Single Crystals by Thermally Stimulated Current Measurements
    (Iop Publishing Ltd, 2021) Isik, M.; Delice, S.; Gasanly, N. M.
    Bi12SiO20 (BSO) single crystal belongs to the sillenite semiconducting family known as defective compounds. The present paper investigates the defect centers in BSO grown by Czochralski method by means of thermally stimulated current (TSC) measurements performed in the 10-260 K range. The TSC glow curve obtained at heating rate of beta = 0.1 K s(-1) presented several peaks associated with intrinsic defect centers. The activation energies of defect centers were revealed as 0.09, 0.15, 0.18, 0.22, 0.34, 0.70 and 0.82 eV accomplishing the curve fit analyses method. The peak maximum temperatures and orders of kinetics of each deconvoluted peak were also determined as an outcome of fitting process. TSC experiments were expanded by making the measurements at various heating rates between 0.1 and 0.3 K s(-1) to get information about the heating rate dependent peak parameters.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 17
    Trap Distribution in Tlins2 Layered Crystals From Thermally Stimulated Current Measurements
    (Korean Physical Soc, 2008) Isik, M.; Goksen, K.; Gasanly, N. M.; Ozkan, H.
    We have carried out thermally stimulated current (TSC) measurements with the current flowing along the layer on as-grown TlInS2 layered single crystals in the low temperature range 10 - 110 K with different heating rates of 0.1 - 1.5 K/s. Experimental evidence was found for the presence of two shallow electron trapping centers with activation energies of 12 and 14 meV. Their capture cross sections have been determined as 2.2 x 10(-23) and 7.1 x 10(-25) cm(2), respectively. It was concluded that retrapping in these centers is negligible, which was confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumed slow retrapping. An exponential distribution of electron traps was revealed from the analysis of the TSC data obtained at different light excitation temperatures. This experimental technique provided a value of 27 meV/decade for the trap distribution. The parameters of the monoclinic unit cell were determined by studying the X-ray powder diffraction.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Thermoluminescence Characteristics of Tl4gain3< Layered Single Crystals
    (Taylor & Francis Ltd, 2014) Delice, S.; Isik, M.; Gasanly, N. M.
    The properties of trapping centres in - as grown - Tl4GaIn3S8 layered single crystals were investigated in the temperature range of 10-300K using thermoluminescence (TL) measurements. TL curve was analysed to characterize the defects responsible for the observed peaks. Thermal activation energies of the trapping centres were determined using various methods: curve fitting, initial rise and peak shape methods. The results indicated that the peak observed in the low-temperature region composed of many overlapped peaks corresponding to distributed trapping centres in the crystal structure. The apparent thermal energies of the distributed traps were observed to be shifted from similar to 12 to similar to 125meV by increasing the illumination temperature from 10 to 36K. The analysis revealed that the first-order kinetics (slow retrapping) obeys for deeper level located at 292meV.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 13
    Enhancement of Electrical Performance of Znse Thin Films Via Au Nanosandwiching
    (Sciendo, 2020) Qasrawi, A. F.; Taleb, Maram F.
    In this work, we report the effect of sandwiching of Au nanosheets on the structural and electrical properties of ZnSe thin films. The ZnSe films which are grown by the thermal evaporation technique onto glass and yttrium thin film substrates exhibit lattice deformation accompanied with lattice constant extension, grain size reduction and increased defect density upon Au nanosandwiching. The temperature dependent direct current conductivity analysis has shown that the 70 nm thick Au layers successfully increased the electrical conductivity by three orders of magnitude without causing degeneracy. On the other hand, the alternating current conductivity studies in the frequency domain of 10 MHz to 1800 MHz have shown that the alternating current conduction in ZnSe is dominated by both of quantum mechanical tunneling and correlated barrier hopping of electrons over the energy barriers formed at the grain boundaries. The Au nanosheets are observed to increase the density of localized states near Fermi level and reduce the average hopping energy by similar to 5 times. The conductivity, capacitance, impedance and reflection coefficient spectral analyses have shown that the nanosandwiching of Au between two layers of ZnSe makes the zinc selenide more appropriate for electronic applications and for applications which need microwave cavities.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Thermoluminescence Dose Response and Kinetic Parameters of Gd-Doped Zno Nanoparticles
    (Iop Publishing Ltd, 2024) Isik, M.; Yildirim, T.; Guner, M.; Gasanly, N. M.
    This study investigates the thermoluminescence (TL) properties of undoped and gadolinium (Gd)-doped zinc oxide (ZnO) nanoparticles synthesized via sol-gel method. The crystal structure of both synthesized nanoparticles was determined as hexagonal from x-ray diffraction pattern. The TL curve of undoped ZnO nanoparticles reveals two distinct peaks at 400.5 and 479.2 K, each associated with trap centers featuring activation energies of 0.84 and 1.05 eV. TL curve of the Gd:ZnO introduced three peaks associated with trap centers at 1.10, 1.18, and 1.25 eV. Notably, the absence of the 0.84 eV trap center in Gd-doped ZnO implies a modification in the defect structure. Considering the effect of Gd-doping on the band structure and potential minor errors in the analysis results, it was stated that the traps at 1.05 and 1.10 eV levels belonged to the same defect center. Dose-dependent investigations for undoped and Gd-doped ZnO nanoparticles reveal linear behaviors in the TL response, highlighting their potential for dosimetric applications. Photoluminescence spectra of both compounds exhibited emission peaks around 455 and 577 nm, which were associated with native defect centers.