5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 3EFFECT OF Y, Au AND YAu NANOSANDWICHING ON THE STRUCTURAL, OPTICAL AND DIELECTRIC PROPERTIES OF ZnSe THIN FILMS(Natl inst R&d Materials Physics, 2019) Qasrawi, A. F.; Taleb, M. F.In this article, we report the effects of insertion of yttrium, gold and yttrium-gold (YAu) metallic nano-slabs on the structural, optical and dielectric properties of ZnSe thin films. The ZnSe thin films which are prepared by the thermal evaporation technique under vacuum pressure of 10-5 mbar exhibit hexagonal structure. While the insertion of the 70 nm thick Y layers does not alter the lattice parameters and stress values, the Au and YAu layers increased the lattice parameters along the a- and c-axes and decreased the stress values. In addition, the insertion of these metallic layers slightly alters the value of the energy band gap and increases the width of the interbands. The light absorbability are increased by 1.4, 2.0 and 2.4 times upon insertion of Y, Au and YAu, slabs, respectively. On the other hand, the dielectric and optical conductivity analyses has shown that the use of the YAu stacked metal layers increases the real part of the dielectric constant, the optical conductivity, the drift mobility and extended the plasmon frequency range from 35.1 to 254.0 (Omega cm)(-1), from 1098 to 1766 cm(2)/vs and from 0.94-3.11 GHz to 2.13-4.83 GHz, respectively. The insertion of the two stacked metallic layers between two layers of ZnSe makes the ZnSe more appropriated for thin film transistor technology.Article Citation - WoS: 14Citation - Scopus: 13Enhancement of Electrical Performance of Znse Thin Films Via Au Nanosandwiching(Sciendo, 2020) Qasrawi, A. F.; Taleb, Maram F.In this work, we report the effect of sandwiching of Au nanosheets on the structural and electrical properties of ZnSe thin films. The ZnSe films which are grown by the thermal evaporation technique onto glass and yttrium thin film substrates exhibit lattice deformation accompanied with lattice constant extension, grain size reduction and increased defect density upon Au nanosandwiching. The temperature dependent direct current conductivity analysis has shown that the 70 nm thick Au layers successfully increased the electrical conductivity by three orders of magnitude without causing degeneracy. On the other hand, the alternating current conductivity studies in the frequency domain of 10 MHz to 1800 MHz have shown that the alternating current conduction in ZnSe is dominated by both of quantum mechanical tunneling and correlated barrier hopping of electrons over the energy barriers formed at the grain boundaries. The Au nanosheets are observed to increase the density of localized states near Fermi level and reduce the average hopping energy by similar to 5 times. The conductivity, capacitance, impedance and reflection coefficient spectral analyses have shown that the nanosandwiching of Au between two layers of ZnSe makes the zinc selenide more appropriate for electronic applications and for applications which need microwave cavities.Article Citation - WoS: 4Citation - Scopus: 5Znse/Al Nanosandwiched Structures as Dual Terahertz-Gigahertz Signal Receivers(Iop Publishing Ltd, 2019) Qasrawi, A. F.; Alsabe, Ansam M.In the current work, we focus on the enhancements in performance of the ZnSe terahertz/gigahertz signal receivers which are achieved by the insertion of nanosheets of Al layers of thickness of 30 nm between two 500 nm thick layers of ZnSe. The Al nanosandwiching which decreased the defect density, stacking faults and increased the grain size in the films increased the optical conductivity by more than 125%, increased the drift mobility to 313 cm(2) V-1 s(-1) and widens the plasmon frequency ranges to 0.49-4.92 GHz. In addition, the analysis of the terahertz cutoff (f(co)) frequency spectra have shown that the presence of Al nanosheets improves the cutoff frequency value by three orders of magnitude making the ZnSe receivers more suitable for visible light and IR communication technology. The value of f(co) is 49.6 THz when light signal of wavelengths of 408 nm that suits blue lasers is irradiated. Moreover, the impedance spectroscopy analysis in the gigahertz frequency domain has shown that the Al sandwiched ZnSe exhibits negative capacitance spectra in the frequency domain of 0.01-1.04 GHz. This property is useful for parasitic capacitance cancelling and noise reducing in circuits. Furthermore, the study of the microwave cutoff frequency spectra has shown that the value of f(co) is enhanced by three orders of magnitude above 1.5 GHz.Article Citation - Scopus: 3Effect of Y, Au and Yau Nanosandwiching on the Structural, Optical and Dielectric Properties of Znse Thin Films(S.C. Virtual Company of Phisics S.R.L, 2019) Qasrawi,A.F.; Taleb,M.F.In this article, we report the effects of insertion of yttrium, gold and yttrium-gold (YAu) metallic nano-slabs on the structural, optical and dielectric properties of ZnSe thin films. The ZnSe thin films which are prepared by the thermal evaporation technique under vacuum pressure of 10-5 mbar exhibit hexagonal structure. While the insertion of the 70 nm thick Y layers does not alter the lattice parameters and stress values, the Au and YAu layers increased the lattice parameters along the a- and c-axes and decreased the stress values. In addition, the insertion of these metallic layers slightly alters the value of the energy band gap and increases the width of the interbands. The light absorbability are increased by 1.4, 2.0 and 2.4 times upon insertion of Y, Au and YAu, slabs, respectively. On the other hand, the dielectric and optical conductivity analyses has shown that the use of the YAu stacked metal layers increases the real part of the dielectric constant, the optical conductivity, the drift mobility and extended the plasmon frequency range from 35.1 to 254.0 (Ωcm)−1, from 1098 to 1766 cm2/Vs and from 0.94-3.11 GHz to 2.13-4.83 GHz, respectively. The insertion of the two stacked metallic layers between two layers of ZnSe makes the ZnSe more appropriated for thin film transistor technology. © 2019, S.C. Virtual Company of Phisics S.R.L. All right reserved.Article Citation - WoS: 5Citation - Scopus: 6Influence of Temperature on Optical Properties of Electron-Beam Znse Thin Film(Iop Publishing Ltd, 2020) Gullu, H. H.; Isik, M.; Gasanly, N. M.; Parlak, M.Structural and optical properties of ZnSe thin films grown by electron-beam evaporation technique were reported in the present paper. X-ray diffraction pattern exhibited a single peak around 27 degrees which is well-suited with cubic phase of the films. Energy dispersive X-ray spectroscopy analyses resulted in atomic composition ratio of Zn/Se nearly 1.0 which corresponds to the chemical formula of ZnSe. Transmission experiments were performed at various temperatures in between 10 and 300 K. The analyses of the transmission data showed that direct band gap energy of the ZnSe thin films increases from 2.72 to 2.83 eV as temperature was reduced to 10 K from room temperature. The Varshni and O'Donnell-Chen models giving the temperature-band gap energy relation were used to get various optical parameters of the evaporated thin films. Analyses resulted in absolute zero temperature band gap energy as 2.83 eV, temperature coefficient as -5.8 x 10(-4) eV K-1 and average phonon energy as 16 meV. Urbach tail state energies were also calculated using absorption coefficient in the low photon energy region as increasing from 173 meV (300 K) to 181 meV (10 K) with decreasing ambient temperature.

