ZnSe/Al/ZnSe nanosandwiched structures as dual Terahertz-Gigahertz signal receivers

No Thumbnail Available

Date

2019

Authors

Qasrawı, Atef Fayez Hasan

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In the current work, we focus on the enhancements in performance of the ZnSe terahertz/gigahertz signal receivers which are achieved by the insertion of nanosheets of Al layers of thickness of 30 nm between two 500 nm thick layers of ZnSe. The Al nanosandwiching which decreased the defect density, stacking faults and increased the grain size in the films increased the optical conductivity by more than 125%, increased the drift mobility to 313 cm(2) V-1 s(-1) and widens the plasmon frequency ranges to 0.49-4.92 GHz. In addition, the analysis of the terahertz cutoff (f(co)) frequency spectra have shown that the presence of Al nanosheets improves the cutoff frequency value by three orders of magnitude making the ZnSe receivers more suitable for visible light and IR communication technology. The value of f(co) is 49.6 THz when light signal of wavelengths of 408 nm that suits blue lasers is irradiated. Moreover, the impedance spectroscopy analysis in the gigahertz frequency domain has shown that the Al sandwiched ZnSe exhibits negative capacitance spectra in the frequency domain of 0.01-1.04 GHz. This property is useful for parasitic capacitance cancelling and noise reducing in circuits. Furthermore, the study of the microwave cutoff frequency spectra has shown that the value of f(co) is enhanced by three orders of magnitude above 1.5 GHz.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

aluminum - nanosandwiching, ZnSe, optical, VLC, microwave

Turkish CoHE Thesis Center URL

Fields of Science

Citation

4

WoS Q

Q3

Scopus Q

Source

Volume

6

Issue

6

Start Page

End Page

Collections