Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 15
    Citation - Scopus: 16
    Electrical Parameters of Al/Inse Rf Sensors
    (Iop Publishing Ltd, 2014) Qasrawi, A. F.
    An Al/InSe/C Schottky device is designed on the surface of amorphous InSe thin films. The device is observed to exhibit a switching property at particular biasing voltages. The 'on/off' current ratio is found to be 7.9 and 9.3 at forward and reverse biasing voltages of 2.0 and 2.25 V, respectively. The 'off' and 'on' operational modes are ascribed to the domination of the tunneling of charged particles through a barrier height of 0.83 eV with a depletion region width of 64 nm and due to the domination of the thermionic emission of charged carriers over a barrier height of 0.53 eV, respectively. In addition, the spectral analysis of the capacitance of the device which was carried in the frequency range of 10.0 k-3.0 GHz reflected dc voltage biasing-dependent high quality resonating peaks. The strongest one appeared at a frequency of 36.8 MHz for a biasing voltage of 0.70 V. Furthermore, the loss tangent of the Al/InSe/C device is found to be of the order of 10(-7) at 3.0 GHz. Consistently, the capacitance-voltage spectra of these sensors reflected pronounced tunability up to 100 MHz. The Al/InSe/C device performance, the switching properties and the quality of the resonance peaks indicate the possibility of using these sensors in RF technology.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Hot aluminum substrate induced hexagonal-tetragonal phase transitions in InSe and performance of Al/InSe/Cu2O pn tunneling devices
    (Wiley, 2020) Qasrawi, Atef Fayez; Kmail, Reham Reda
    In the current study, we have considered the induced phase transitions in Al/InSe thin film substrates and employing them for fabrication of InSe/Cu2O tunneling channels. The InSe substrates are observed to prefer the transition from the hexagonal gamma-In(2)Se(3)to the rarely observed tetragonal InSe. The phase transitions are obtained by the thermally assisted diffusion of aluminum, which was already kept at 250 degrees C in a vacuum media of 10(-5)mbar before the compensation of InSe. The tetragonal InSe also induced the crystallization of orthorhombic Cu2O with acceptable level of lattice matching along thea-axis. The Al/InSe/Cu2O/Au heterojunctions, which are electrically analyzed are observed to exhibit rectifying features with the current conduction being dominated by electric fields assisted thermionic emission (tunneling) through a barrier of width of 5.5 to 14.0 nm and barrier height of 0.19 to 0.30 eV. The ac analyses of the capacitance and conductance spectra of this device have shown that it can exhibit high/low capacitance and frequency dependent conductance switching modes at 0.12 GHz in addition to negative capacitance effect in the range of 0.12 to 1.80 GHz. The features of the device are promising as they indicate the suitability of the device for fabrication of field effect transistors, memory devices, and ultrafast switches.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Optical Interactions in the Inse/Cdse Interface
    (Wiley-v C H verlag Gmbh, 2016) Qasrawi, A. F.; Rabbaa, S.
    In this work, the structural and optical properties of the InSe/CdSe heterojunction are investigated by means of X-ray diffraction and ultraviolet-visible light spectrophotometry techniques. The hexagonal CdSe films that were deposited onto amorphous InSe and onto glass substrates at a vacuum pressure of 10(-5)mbar, exhibited interesting optical characteristics. Namely, the absorption, transmission, and reflection spectra that were recorded in the incident light wavelength range of 300-1100nm, for the InSe, CdSe, and InSe/CdSe interface revealed direct allowed transition energy bandgaps of 1.44, 1.85, and 1.52eV, respectively. The valence-band offset for the interface is found to be 0.36eV. On the other hand, the dielectric constant spectral analysis displayed a large increase in the real part of the dielectric constant associated with decreasing frequency below 500THz. In addition, the optical conductivity spectra that were analyzed and modeled in accordance with the Drude theory displayed a free-carrier average scattering time of 0.4fs and a drift mobility of 6.65cm(2)V(-1)s(-1) for the InSe/CdSe interface. The features of this interface nominate it as a promising member for the production of optoelectronic Schottky channels and as thin-film transistors.