Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Effects of Laser Excitation and Temperature on Ag/Gase0.5< Microwave Filters
    (Springer, 2014) Qasrawi, A. F.; Khanfar, H. K.
    The effects of temperature, illumination, and microwave signals on Ag/GaS0.5S0.5/C Schottky-type microwave filters have been investigated. The devices, which were produced from thin layers of GaSe0.5S0.5 single crystal, had room temperature barrier height and ideality factor of 0.65 eV and 3.28, respectively. Barrier height increased uniformly with increasing temperature, at 2.12 x 10(-2) eV/K, and the ideality factor approached ideality. The devices can even function at 95A degrees C. A current switching phenomenon from low to high injection ("On/Off") was also observed; this current switching appears at a particular voltage, V (s), that shifts toward lower values as the temperature is increased. When the devices were reverse-biased and illuminated with a laser beam of wavelength 406 nm, a readily distinguishable V (s) was observed that shifted with increasing laser power. When the devices were run in passive mode and excited with an ac signal of power 0.0-20.0 dBm and frequency 0.05-3.0 GHz they behaved as band filters that reject signals at 1.69 GHz. Device resistance was more sensitive to signal amplitude at low frequencies (50 MHz) than at high frequencies. The features of these Ag/GaS0.5S0.5/C Schottky devices imply that they may be used as optical switches, as self standing, low band-pass, band reject filters, and as high band-pass microwave filters.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Physical Design and Dynamical Analysis of Resonant-Antiresonant Ag/MgO/GaSe/Al Optoelectronic Microwave Devices
    (Springer, 2015) Kmail, Renal R. N.; Qasrawi, A. F.
    In this work, the design and optical and electrical properties of MgO/GaSe heterojunction devices are reported and discussed. The device was designed using 0.4-mu m-thick n-type GaSe as substrate for a 1.6-mu m-thick p-type MgO optoelectronic window. The device was characterized by means of ultraviolet-visible optical spectrophotometry in the wavelength region from 200 nm to 1100 nm, current-voltage (I-V) characteristics, impedance spectroscopy in the range from 1.0 MHz to 1.8 GHz, and microwave amplitude spectroscopy in the frequency range from 1.0 MHz to 3.0 GHz. Optical analysis of the MgO/GaSe heterojunction revealed enhanced absorbing ability of the GaSe below 2.90 eV with an energy bandgap shift from 2.10 eV for the GaSe substrate to 1.90 eV for the heterojunction design. On the other hand, analysis of I-V characteristics revealed a tunneling-type device conducting current by electric field-assisted tunneling of charged particles through a barrier with height of 0.81 eV and depletion region width of 670 nm and 116 nm when forward and reverse biased, respectively. Very interesting features of the device are observed when subjected to alternating current (ac) signal analysis. In particular, the device exhibited resonance-antiresonance behavior and negative capacitance characteristics near 1.0 GHz. The device quality factor was similar to 10(2). In addition, when a small ac signal of Bluetooth amplitude (0.0 dBm) was imposed between the device terminals, the power spectra of the device displayed tunable band-stop filter characteristics with maximum notch frequency of 1.6 GHz. The energy bandgap discontinuity, the resonance-antiresonance behavior, the negative capacitance features, and the tunability of the electromagnetic power spectra at microwave frequencies nominate the Ag/MgO/GaSe/Al device as a promising optoelectronic device for use in multipurpose operations at microwave frequencies.