Effects of Laser Excitation and Temperature on Ag/Gase<sub>0.5< Microwave Filters

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

The effects of temperature, illumination, and microwave signals on Ag/GaS0.5S0.5/C Schottky-type microwave filters have been investigated. The devices, which were produced from thin layers of GaSe0.5S0.5 single crystal, had room temperature barrier height and ideality factor of 0.65 eV and 3.28, respectively. Barrier height increased uniformly with increasing temperature, at 2.12 x 10(-2) eV/K, and the ideality factor approached ideality. The devices can even function at 95A degrees C. A current switching phenomenon from low to high injection ("On/Off") was also observed; this current switching appears at a particular voltage, V (s), that shifts toward lower values as the temperature is increased. When the devices were reverse-biased and illuminated with a laser beam of wavelength 406 nm, a readily distinguishable V (s) was observed that shifted with increasing laser power. When the devices were run in passive mode and excited with an ac signal of power 0.0-20.0 dBm and frequency 0.05-3.0 GHz they behaved as band filters that reject signals at 1.69 GHz. Device resistance was more sensitive to signal amplitude at low frequencies (50 MHz) than at high frequencies. The features of these Ag/GaS0.5S0.5/C Schottky devices imply that they may be used as optical switches, as self standing, low band-pass, band reject filters, and as high band-pass microwave filters.

Description

Khanfar, Hazem k./0000-0002-3015-4049; Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Shottky, GaSe0.5S0.5, sensors, barrier height, microwave, mobile

Turkish CoHE Thesis Center URL

Fields of Science

0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
2

Source

Journal of Electronic Materials

Volume

43

Issue

9

Start Page

3121

End Page

3127

Collections

PlumX Metrics
Citations

CrossRef : 2

Scopus : 2

Captures

Mendeley Readers : 4

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.35622155

Sustainable Development Goals