Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 13
    Citation - Scopus: 14
    Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization
    (Mdpi, 2021) Alazzawi, Marwa; Alsahib, Nabeel Kadim Abid; Sasmazel, Hilal Turkoglu
    Glycine (Gly), which is the simplest amino acid, induces the inflammation response and enhances bone mass density, and particularly its beta polymorph has superior mechanical and piezoelectric properties. Therefore, electrospinning of Gly with any polymer, including polyvinyl alcohol (PVA), has a great potential in biomedical applications, such as guided bone regeneration (GBR) application. However, their application is limited due to a fast degradation rate and undesirable mechanical and physical properties. Therefore, encapsulation of Gly and PVA fiber within a poly(epsilon-caprolactone) (PCL) shell provides a slower degradation rate and improves the mechanical, chemical, and physical properties. A membrane intended for GBR application is a barrier membrane used to guide alveolar bone regeneration by preventing fast-proliferating cells from growing into the bone defect site. In the present work, a core/shell nanofibrous membrane, composed of PCL as shell and PVA:Gly as core, was developed utilizing the coaxial electrospinning technique and characterized morphologically, mechanically, physically, chemically, and thermally. Moreover, the characterization results of the core/shell membrane were compared to monolithic electrospun PCL, PVA, and PVA:Gly fibrous membranes. The results showed that the core-shell membrane appears to be a good candidate for GBR application with a nano-scale fiber of 412 +/- 82 nm and microscale pore size of 6.803 +/- 0.035 mu m. Moreover, the wettability of 47.4 +/- 2.2 degrees contact angle (C.A) and mechanical properties of 135 +/- 3.05 MPa average modulus of elasticity, 4.57 +/- 0.04 MPa average ultimate tensile stress (UTS), and 39.43% +/- 0.58% average elongation at break are desirable and suitable for GBR application. Furthermore, the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results exhibited the formation of beta-Gly.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 28
    Development of Amoxicillin-Loaded Electrospun Polyurethane/Chitosan Β-Tricalcium Phosphate Scaffold for Bone Tissue Regeneration
    (Ieee-inst Electrical Electronics Engineers inc, 2018) Topsakal, Aysenur; Uzun, Muhammet; Ugar, Gaye; Ozcan, Aslihan; Altun, Esra; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    Biocompatible nanocomposite electrospun fibers containing Polyurethane/Chitosan/beta-Tri calcium phosphate with diverse concentrations were designed and produced through the electrospinning process for bone tissue engineering applications. After the production process, density measurement, viscosity, electrical conductivity, and tensile strength measurement tests were carried out as physical analyses of blended solutions. The chemical structural characterization was scrutinized using Fourier transform infrared spectrometer (FTIR), and scanning electron microscopy (SEM) was used to observe the morphological details of developed electrospun scaffolds. Cell viability, attachment, and proliferation were performed using a L929 fibroblast cell line. Based on the physical, SEM, FTIR analysis, and cell culture studies, preferable nanofiber composition was selected for further studies. Amoxicillin (AMX) was loaded to that selected nanofiber composition for examination of the drug release. In comparison with other studies on similar AMX controlled products, higher drug loading and encapsulation efficiencies were obtained. It has been clearly found that the developed nanofiber composites have potential for bone tissue engineering applications.
  • Article
    Citation - WoS: 21
    Citation - Scopus: 18
    Dbd Atmospheric Plasma-Modified, Electrospun, Layer-By Polymeric Scaffolds for L929 Fibroblast Cell Cultivation
    (Taylor & Francis Ltd, 2016) Surucu, Seda; Sasmazel, Hilal Turkoglu
    This paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar+O-2 and Ar+N-2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100sccm) and for different modification times (0.5-7min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar+O-2 plasma for 1min under 70cm(3)/min O-2 flow rate (71.077 degrees +/- 3.578) showed a 18.83% decrease compare to unmodified samples' CA value (84.463 degrees +/- 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar+O-2 (1min 70sccm) and Ar+N-2 (40s 70sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar+O-2 and Ar+N-2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar+O-2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds.