8 results
Search Results
Now showing 1 - 8 of 8
Article Citation - WoS: 7Citation - Scopus: 9Ann-Assisted Forecasting of Adsorption Efficiency To Remove Heavy Metals(Tubitak Scientific & Technological Research Council Turkey, 2019) Buaısha, Magdi; Balku, Şaziye; Yaman, Şeniz ÖzalpIn wastewater treatment, scientific and practical models utilizing numerical computational techniques suchas artificial neural networks (ANNs) can significantly help to improve the process as a whole through adsorption systems.In the modeling of the adsorption efficiency for heavy metals from wastewater, some kinetic models have been used such as pseudo first-order and second-order. The present work develops an ANN model to forecast the adsorption efficiency of heavy metals such as zinc, nickel, and copper by extracting experimental data from three case studies. To do this, we apply trial-and-error to find the most ideal ANN settings, the efficiency of which is determined by mean square error (MSE) and coefficient of determination (R2). According to the results, the model can forecast adsorption efficiency percent (AE%) with a tangent sigmoid transfer function (tansig) in the hidden layer with 10 neurons and a linear transferfunction (purelin) in the output layer. Furthermore, the Levenberg–Marquardt algorithm is seen to be most ideal for training the algorithm for the case studies, with the lowest MSE and high R2 . In addition, the experimental results and the results predicted by the model with the ANN were found to be highly compatible with each other.Article Citation - WoS: 20Citation - Scopus: 22Electrochemical and Optical Properties of an Azo Dye Based Conducting Copolymer(Tubitak Scientific & Technological Research Council Turkey, 2009) Cihaner, Atilla; Algi, FatihThe electrochemical and optical properties of a novel conducting copolymer called poly(2,5'-dimethyl-[4-(2,5-di-thiophen-2-yl-pyrrol-1-yl)-phenyl]azobenzene-co-(3,4-ethylenedioxythiophene)) (poly(1-co-EDOT)) are reported. Electrochemically synthesized poly(1-co-EDOT) based on the azo dye has a well-defined and reversible redox couple (0.37 V vs. Ag/AgCl) with good cycle stability. The copolymer film exhibits high conductivity (13 S/cm) as well as electrochromic behavior (magenta when neutralized and transmissive sky blue when oxidized). Furthermore, electro-optically active copolymer film has a low band gap of 1.79 eV with a pi-pi* transition at 555 nm.Article Citation - WoS: 2Citation - Scopus: 2Synthesis, Properties, and Electrochemistry of a Photochromic Compound Based on Dithienylethene and Prodot(Tubitak Scientific & Technological Research Council Turkey, 2015) Algi, Melek Pamuk; Cihaner, Atilla; Algi, FatihThe synthesis, photochromic features, and electrochemistry of a novel material based on dithienylethene (DTE) and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (didecyl-ProDOT) units are described. It is noteworthy that 1,2-bis (5-(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2-methylthiophen-3-yl)cyclopent-1-ene can be efficiently switched between open and closed states by light in both solution and in the solid poly(methyl metacrylate) (PMMA) matrix. It is also found that the emission of this novel compound can be switched on and off upon irradiation.Article Citation - WoS: 2Citation - Scopus: 3Experimental and Theoretical Investigation of the Reaction Between Co2 and Carbon Dioxide Binding Organic Liquids(Tubitak Scientific & Technological Research Council Turkey, 2016) Tankal, Hilal; Yuksel Orhan, Ozge; Alper, Erdogan; Ozdogan, Telhat; Kayi, HakanThe reaction kinetics of CO2 absorption into new carbon dioxide binding organic liquids (CO(2)BOLs) was comprehensively studied to evaluate their potential for CO2 removal. A stopped-flow apparatus with conductivity detection was used to determine the CO2 absorption kinetics of novel CO(2)BOLs composed of DBN (1,5-diazabicyclo[4.3.0]non-5-ene)/1-propanol and TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene)/1-butanol. A modified termolecular reaction mechanism for the reaction of CO2 with CO(2)BOLs was used to calculate the observed pseudo-first order rate constant k(0) (s(-1)) and second-order reaction rate constant k(2) (m(3)/kmol.s). Experiments were performed by varying organic base (DBN or TBD) weight percentage in alcohol medium for a temperature range of 288-308 K. It was found that k(0) increased with increasing amine concentration and temperature. By comparing using two different CO2BOL systems, it was observed that the TBD/1-butanol system has faster reaction kinetics than the DBN/1-propanol system. Finally, experimental and theoretical activation energies of these CO2BOL systems were obtained and compared. Quantum chemical calculations using spin restricted B3LYP and MP2 methods were utilized to reveal the structural and energetic details of the single-step termolecular reaction mechanism.Article Citation - WoS: 9Citation - Scopus: 10The Synthesis, Characterization and Energy Transfer Efficiency of a Dithienylpyrrole and Bodipy Based Donor-Acceptor System(Tubitak Scientific & Technological Research Council Turkey, 2009) Atalar, Taner; Cihaner, Atilla; Algi, FatihA dithienylpyrrole-BODIPY based donor-acceptor system with 1,4-phenylene spacer as a model system for energy transfer was designed and synthesized. Absorption and emission spectra have revealed an efficient resonance energy transfer from dithienylpyrrole as donor to BODIPY as acceptor.Article Citation - Scopus: 1Electrochemical Copolymerization of Thiophene Containing Pseudo-Polyether Cages With Pyrrole(Tubitak Scientific & Technological Research Council Turkey, 2006) Cihaner, Atilla; Onal, Ahmet M.; Chemical EngineeringConducting copolymers were synthesized via the electrochemical oxidation of pyrrole (Py) in the presence of the monomer 1,12-bis(2-thienyl)-2,5,8,11-tetraoxadodecane (1). The presence of monomer I in the electrolytic solution greatly changed the CV behavior of Py during its potensiodynamic polymerization. The electroactivity of poly(I-co-Py) increased with the increasing amount of I in the comonomer mixture. Copolymer films were prepared via constant potential electrolysis in an electrolytic solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF(6)) dissolved in acetonitrile. The spectroelectrochemical properties of the films were investigated using UV-VIS spectroscopy.Article Influence of Synthesis Parameters on the Structural Formation of Mayenite via the Citrate Sol-Gel Method(Tubitak Scientific & Technological Research Council Turkey, 2025) Eryildirim, Busra; Oktar, Nuray; Dogu, DorukMayenite (Ca12Al14O33) has remarkable properties such as high oxygen mobility, ionic conductivity, and catalytic activity. It has many different applications, including oxide-conducting electrolytes, fluorescent lamps, moisture sensors, hydrogen-permeable membranes, oxygen pumps, hydrogen storage, and catalysis. However, pure and homogeneous mayenite synthesis parameters have not yet been fully explored. This study examines the effect of synthesis parameters including metal salt (MS) to citric acid (CA) molar ratios (1:1 and 1:2), pH (0.4-2), and calcination temperature (900-1200 degrees C) in citrate sol-gel method on the crystal structure of mayenite. Synthesized materials were examined by thermogravimetric (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, N2 adsorption-desorption, scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectrometry (ICP-OES), Fourier-transform infrared spectroscopy (FTIR), and pyridine adsorbed diffuse reflectance Fourier-transformed infrared spectroscopy (DRIFTS) analyses. The results show that all 3 parameters contribute to the mayenite phase formation and different impurity phases can be observed depending on the synthesis parameters. With no pH adjustment and an MS to CA ratio of 1, other phases of calcium aluminate mostly form. Mayenite becomes the main phase by doubling the CA amount. Besides CA, pH is also an important factor in mayenite synthesis. When the pH was adjusted to 2 with the MS to CA ratio at 1:1, mayenite was formed as the main phase, but other phases of calcium aluminate were also observed in the structure. XRD results show that all parameters studied influence the crystal structure of the final material, including the calcination temperature. This study shows that pure mayenite can be synthesized with a calcination temperature of 1200 degrees C, at a pH of 2, and the MS to CA molar ratio of 1:2.Article Gold-Assembled Silica-Coated Cobalt Nanoparticles as Efficient Magnetic Separation Units and Surface-Enhanced Raman Scattering Substrate Lütfiye Sezen Yildirim1,, Murat Kaya2,∗,, Mürvet Volkan(Tubitak Scientific & Technological Research Council Turkey, 2019) Yıldırım, Lütfiye Sezen; Kaya, Murat; Volkan, MürvetMagnetic and optical bifunctional nanoparticles that combine easy separation, preconcentration, and efficientSERS capabilities have been fabricated with high sensitivity and reproducibility through a low-cost method. Thesegold nanoparticles attached on magnetic silica-coated cobalt nanospheres (Co@SiO2 /AuNPs) display the advantageof strong resonance absorption due to gaps at nanoscale between neighboring metal nanoparticles bringing large fieldenhancements, known as “hot spots”. The prepared particles can be controlled by using an external magnetic field,which makes them very promising candidates in biological applications and Raman spectroscopic analysis of dissolvedorganic species. The magnetic property of the prepared particles lowers the detection limits through preconcentrationwith solid-phase extraction in SERS analysis. The performance of the prepared nanostructures was evaluated as a SERSsubstrate using brilliant cresyl blue (BCB) and rhodamine 6G (R6G) as model compounds. The solid-phase affinityextraction of 4-mercapto benzoic acid (4-MBA) using bifunctional Co@SiO2 /AuNPs nanoparticles followed by magneticseparation and the measurement of the SERS signal on the same magnetic particles without elution were investigated.Approximately 50-fold increase in SERS intensity was achieved through solid-phase extraction of 8.3 × 10 −6 M 4-MBAin 10 min.

