Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 17
    Citation - Scopus: 16
    The Approximation by q-bernstein Polynomials in the Case q ↓ 1
    (Springer Basel Ag, 2006) Ostrovska, S
    Let B-n (f, q; x), n = 1, 2, ... , 0 < q < infinity, be the q-Bernstein polynomials of a function f, B-n (f, 1; x) being the classical Bernstein polynomials. It is proved that, in general, {B-n (f, q(n); x)} with q(n) down arrow 1 is not an approximating sequence for f is an element of C[0, 1], in contrast to the standard case q(n) up arrow 1. At the same time, there exists a sequence 0 < delta(n) down arrow 0 such that the condition 1 <= q(n) <= delta(n) implies the approximation of f by {B-n(f, qn; x)} for all f is an element of C[0, 1].
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Liftable Homeomorphisms of Rank Two Finite Abelian Branched Covers
    (Springer Basel Ag, 2021) Atalan, Ferihe; Atalan, Ferihe; Medetogullari, Elif; Ozan, Yildiray; Medetoğulları, Elif; Atalan, Ferihe; Medetoğulları, Elif; Mathematics; Mathematics
    We investigate branched regular finite abelian A-covers of the 2-sphere, where every homeomorphism of the base (preserving the branch locus) lifts to a homeomorphism of the covering surface. In this study, we prove that if A is a finite abelian p-group of rank k and Sigma -> S-2 is a regular A-covering branched over n points such that every homeomorphism f:S-2 -> S-2 lifts to Sigma, then n = k + 1. We will also give a partial classification of such covers for rank two finite p-groups. In particular, we prove that for a regular branched A-covering pi : Sigma -> S-2, where A = ZprxZpt, 1 <= r <= t , all homeomorphisms f:S-2 -> S-2 lift to those of Sigma if and only if t = r or t = r + 1 and p = 3.