The Approximation by <i>q</I>-bernstein Polynomials in the Case <i>q</I> ↓ 1
No Thumbnail Available
Date
2006
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Basel Ag
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Let B-n (f, q; x), n = 1, 2, ... , 0 < q < infinity, be the q-Bernstein polynomials of a function f, B-n (f, 1; x) being the classical Bernstein polynomials. It is proved that, in general, {B-n (f, q(n); x)} with q(n) down arrow 1 is not an approximating sequence for f is an element of C[0, 1], in contrast to the standard case q(n) up arrow 1. At the same time, there exists a sequence 0 < delta(n) down arrow 0 such that the condition 1 <= q(n) <= delta(n) implies the approximation of f by {B-n(f, qn; x)} for all f is an element of C[0, 1].
Description
Keywords
[No Keyword Available]
Turkish CoHE Thesis Center URL
Fields of Science
0101 mathematics, 01 natural sciences
Citation
WoS Q
Q3
Scopus Q
Q3

OpenCitations Citation Count
13
Source
Archiv der Mathematik
Volume
86
Issue
3
Start Page
282
End Page
288
PlumX Metrics
Citations
CrossRef : 12
Scopus : 16
Captures
Mendeley Readers : 2
Google Scholar™

OpenAlex FWCI
2.2082501
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING


