The Approximation by <i>q</I>-bernstein Polynomials in the Case <i>q</I> ↓ 1

dc.authorscopusid 35610828900
dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Ostrovska, S
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:09:33Z
dc.date.available 2024-07-05T15:09:33Z
dc.date.issued 2006
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description.abstract Let B-n (f, q; x), n = 1, 2, ... , 0 < q < infinity, be the q-Bernstein polynomials of a function f, B-n (f, 1; x) being the classical Bernstein polynomials. It is proved that, in general, {B-n (f, q(n); x)} with q(n) down arrow 1 is not an approximating sequence for f is an element of C[0, 1], in contrast to the standard case q(n) up arrow 1. At the same time, there exists a sequence 0 < delta(n) down arrow 0 such that the condition 1 <= q(n) <= delta(n) implies the approximation of f by {B-n(f, qn; x)} for all f is an element of C[0, 1]. en_US
dc.identifier.citationcount 17
dc.identifier.doi 10.1007/s00013-005-1503-y
dc.identifier.endpage 288 en_US
dc.identifier.issn 0003-889X
dc.identifier.issn 1420-8938
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-33644961254
dc.identifier.scopusquality Q3
dc.identifier.startpage 282 en_US
dc.identifier.uri https://doi.org/10.1007/s00013-005-1503-y
dc.identifier.uri https://hdl.handle.net/20.500.14411/1203
dc.identifier.volume 86 en_US
dc.identifier.wos WOS:000236083800011
dc.identifier.wosquality Q3
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Springer Basel Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 16
dc.subject [No Keyword Available] en_US
dc.title The Approximation by <i>q</I>-bernstein Polynomials in the Case <i>q</I> ↓ 1 en_US
dc.type Article en_US
dc.wos.citedbyCount 17
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections