The approximation by <i>q</i>-Bernstein polynomials in the case <i>q</i> ↓ 1

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, S
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:09:33Z
dc.date.available2024-07-05T15:09:33Z
dc.date.issued2006
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractLet B-n (f, q; x), n = 1, 2, ... , 0 < q < infinity, be the q-Bernstein polynomials of a function f, B-n (f, 1; x) being the classical Bernstein polynomials. It is proved that, in general, {B-n (f, q(n); x)} with q(n) down arrow 1 is not an approximating sequence for f is an element of C[0, 1], in contrast to the standard case q(n) up arrow 1. At the same time, there exists a sequence 0 < delta(n) down arrow 0 such that the condition 1 <= q(n) <= delta(n) implies the approximation of f by {B-n(f, qn; x)} for all f is an element of C[0, 1].en_US
dc.identifier.citation17
dc.identifier.doi10.1007/s00013-005-1503-y
dc.identifier.endpage288en_US
dc.identifier.issn0003-889X
dc.identifier.issn1420-8938
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-33644961254
dc.identifier.scopusqualityQ3
dc.identifier.startpage282en_US
dc.identifier.urihttps://doi.org/10.1007/s00013-005-1503-y
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1203
dc.identifier.volume86en_US
dc.identifier.wosWOS:000236083800011
dc.identifier.wosqualityQ3
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleThe approximation by <i>q</i>-Bernstein polynomials in the case <i>q</i> ↓ 1en_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections