The Approximation by <i>q</I>-bernstein Polynomials in the Case <i>q</I> ↓ 1
| dc.contributor.author | Ostrovska, S | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:09:33Z | |
| dc.date.available | 2024-07-05T15:09:33Z | |
| dc.date.issued | 2006 | |
| dc.description.abstract | Let B-n (f, q; x), n = 1, 2, ... , 0 < q < infinity, be the q-Bernstein polynomials of a function f, B-n (f, 1; x) being the classical Bernstein polynomials. It is proved that, in general, {B-n (f, q(n); x)} with q(n) down arrow 1 is not an approximating sequence for f is an element of C[0, 1], in contrast to the standard case q(n) up arrow 1. At the same time, there exists a sequence 0 < delta(n) down arrow 0 such that the condition 1 <= q(n) <= delta(n) implies the approximation of f by {B-n(f, qn; x)} for all f is an element of C[0, 1]. | en_US |
| dc.identifier.doi | 10.1007/s00013-005-1503-y | |
| dc.identifier.issn | 0003-889X | |
| dc.identifier.issn | 1420-8938 | |
| dc.identifier.scopus | 2-s2.0-33644961254 | |
| dc.identifier.uri | https://doi.org/10.1007/s00013-005-1503-y | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1203 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Basel Ag | en_US |
| dc.relation.ispartof | Archiv der Mathematik | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | [No Keyword Available] | en_US |
| dc.title | The Approximation by <i>q</I>-bernstein Polynomials in the Case <i>q</I> ↓ 1 | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 288 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 282 | en_US |
| gdc.description.volume | 86 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2054333537 | |
| gdc.identifier.wos | WOS:000236083800011 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 8.0 | |
| gdc.oaire.influence | 5.6047447E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.6953116E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 1.87 | |
| gdc.openalex.normalizedpercentile | 0.65 | |
| gdc.opencitations.count | 13 | |
| gdc.plumx.crossrefcites | 12 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 16 | |
| gdc.scopus.citedcount | 16 | |
| gdc.wos.citedcount | 17 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |